
*Corresponding author: E-mail: samuel.gtetteh@gmail.com;

Asian J. Res. Com. Sci., vol. 17, no. 5, pp. 30-42, 2024

Asian Journal of Research in Computer Science

Volume 17, Issue 5, Page 30-42, 2024; Article no.AJRCOS.113678
ISSN: 2581-8260

Empirical Study of Agile Software
Development Methodologies: A

Comparative Analysis

Samuel Gbli Tetteh a*

a D Jarvis College of Computing and Digital Media, DePaul University, Chicago, USA.

Author’s contribution

This work was carried out by the author. The author has read and approved the final manuscript.

Article Information

DOI: 10.9734/AJRCOS/2024/v17i5436

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,
peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/113678

Received: 19/12/2023
Accepted: 24/02/2024
Published: 27/02/2024

ABSTRACT

The comparative analysis of software development models, also called the Software Development
Life Cycle (SDLC), is an everyday discourse among software engineers, reflecting the dynamic
nature of the field. Within this realm, various software development methodologies, such as
prototyping, spiral development, and Rapid Action Development, have been established and
recognised for their unique approaches to software creation. In recent years, Agile methodologies
have emerged as prominent contenders in software development, offering flexibility, adaptability,
and efficiency in delivering high-quality software within designated timeframes. Among the array of
Agile methodologies, including Dynamic System Development Method (DSDM), Scrum, Feature-
Driven Development (FDD), Extreme Programming (XP), Kanban, Adaptive Software Development
(ASD), Mendix, Lean, and Crystal, several have garnered significant attention in the software
development community. Specifically, ASD, DSDM, XP, FDD, Kanban, and Scrum have emerged
as prominent choices among Agile methods utilised by software developers. This study conducts a
comprehensive examination and comparison of these six Agile software models, aiming to elucidate
their functionalities, strengths, and weaknesses. The findings of this comparative analysis seek to
provide valuable insights for software industries, enabling informed decision-making when selecting

Review article

Tetteh; Asian J. Res. Com. Sci., vol. 17, no. 5, pp. 30-42, 2024; Article no.AJRCOS.113678

31

software development models for upcoming projects. By understanding each Agile methodology's
nuanced differences and capabilities, software developers and industry stakeholders can align their
project requirements with the most suitable software development approach, ultimately optimising
project outcomes and software quality.

Keywords: Extreme programming; dynamic system development method; feature-driven

development; adaptive software development; agile methodology and kanban.

1. INTRODUCTION

Recently, Agile Software Development (SD)
methodologies have emerged as a cornerstone
in the software engineering landscape,
fundamentally transforming how software
projects are conceptualised, developed, and
delivered. The traditional software development
models, such as Waterfall, Prototyping Model,
and Rapid Development, no longer suffice in
today's dynamic business environment
characterised by rapid changes in customer
requirements [1].

Software development methods and life cycles
are pivotal concepts in software engineering,
delineating the stages through which software
evolves [2]. Agile principles, rooted in customer
satisfaction, stakeholder engagement, and
collaborative development, have revolutionised
the software development paradigm [3].
Methodologies like Extreme Programming (XP),
Feature-Driven Development (FDD), Dynamic
System Development Method (DSDM), and
Adaptive Software Development (ASD) embody
the flexible characteristics necessary to

accommodate changing requirements, expedite
delivery, and enhance software quality.

Agility in software development signifies a
system's capacity to adapt to various changes in
requirements and environments swiftly. Agile SD
processes, characterised by iterative
development cycles, are embraced for their
unparalleled flexibility [4]. This study aims to
comprehensively analyse Agile SD models,
delving into their distinct features, characteristics,
and commonalities.

In Agile SD, software requirements,
development, and products evolve
iteratively to align with dynamic business and
customer needs, as shown in Fig. 1. The
flexibility inherent in Agile methodologies enables
teams to adapt swiftly to changing system
requirements, ensuring compatibility with
evolving project demands [5]. Agile processes
prioritise agility, emphasising the rapid and
efficient response to changes across various
project dimensions, including needs, budget,
schedule, resources, technology, and team
dynamics.

Fig. 1. Agile Software Development Cycle

Tetteh; Asian J. Res. Com. Sci., vol. 17, no. 5, pp. 30-42, 2024; Article no.AJRCOS.113678

32

Central to Agile methodology is the notion that
system code is the medium of interaction and
documentation between users and computers.
The iterative nature of Agile development
ensures that functioning software is delivered to
customers within agreed-upon timeframes, with
new requirements seamlessly integrated into
subsequent iterations. By prioritising customer
satisfaction, collaboration, and adaptability, Agile
SD methodologies have ushered in a new era of
software development characterised by
responsiveness, efficiency, and continuous
improvement

2. LITERATURE REVIEW

 Software development encompasses a
multifaceted process involving analysis, design,
implementation, testing, maintenance, and
documentation to deliver software products.
Within the realm of software engineering, Agile
methodologies have gained significant traction in
recent years, becoming integral to industry
practices, research endeavours, and scholarly
publications. Originating from the concept of
iterative enhancement introduced in 1975, Agile
methodologies represent a paradigm shift from
the rigid and cumbersome nature of traditional
developmental processes [6].

Characterised by their evolutionary nature, Agile
methods prioritise iterative refinement and
adaptive development processes [7]. These
methodologies exhibit distinct features, including
direct collaboration, adaptability, and incremental
deployment. Collaboration between developers
and customers is a hallmark of Agile
development, facilitating close alignment with
customer needs throughout the software
lifecycle. Incremental deployment involves the
rapid iteration of small software increments,
enabling swift responses to evolving
requirements. The inherent flexibility of Agile
methodologies allows seamless adaptation to
changing customer demands during software
development.

In contrast to traditional software methodologies,
which adhere to linear design, build, and
maintenance patterns, Agile development
methods emphasise agility and responsiveness
to customer requirements [2]. Agile practices,
known for their lightweight approach, have
emerged as the preferred choice across various
industries, enabling effective management of
iterative requirements [8]. In today's dynamic
technological and business landscapes,

traditional software development methodologies
often struggle to meet the evolving demands of
advanced fields [9].

The Agile software methodology underscores the
importance of developer-customer interaction
throughout the software development lifecycle.
Widely embraced since its formal inception in
2001, Agile methodologies prioritise customer
involvement to ensure software products align
with customer needs and expectations [10]. Agile
methodology encompasses a diverse family of
lightweight software development approaches,
including Adaptive Software Development (ASD),
Lean Software Development, Feature Driven
Development (FDD), Dynamic Systems
Development Method (DSDM), Crystal, and
Scrum [11].

In Agile practices, emphasis is placed on
interpersonal interaction over rigid processes and
tools. The delivery of working software takes
precedence over exhaustive documentation,
while collaboration with clients to understand
requirements supersedes contract negotiation.
Moreover, Agile methodologies prioritise
responsiveness to changes, enabling teams to
adapt swiftly to evolving project dynamics. This
contrasts with traditional software development
methodologies' linear and inflexible nature,
highlighting the transformative impact of Agile
principles on software engineering practices.

3. OVERVIEW OF THE MODEL

Different Agile Methods have been introduced
over a period of time, and these types work
within a particular category of software
domain:(a) Scrum (b) XP (c) DSDM (d) FDD (e)
ASD (f) Kanban

4. SCRUM

In the landscape of software development
methodologies, the Scrum model, introduced by
Ken Schwaber in 1995, has emerged as a
cornerstone within the broader Agile
methodology framework. Distinguished by its
collaborative and iterative approach, Scrum
encapsulates a set of principles and practices
that redefine how teams conceptualise, plan, and
deliver software solutions [12].

The inception of Scrum in 1995 marked a pivotal
moment in the evolution of agile software
development concepts. Ken Schwaber's model
has since gained widespread adoption,

Tetteh; Asian J. Res. Com. Sci., vol. 17, no. 5, pp. 30-42, 2024; Article no.AJRCOS.113678

33

positioning itself as a leading methodology in the
dynamic and ever-evolving realm of software
engineering. Scrum is an integral component of
the Agile methodology, embodying its core
principles. At its essence, Scrum establishes a
collaborative environment where team members
work collectively towards the timely and cost-
effective delivery of software products. Central to
Scrum is the concept of a cohesive team wherein
members collaborate seamlessly. This
collaborative ethos extends beyond developers
to include cross-functional roles, fostering an
environment where varied skills converge to
achieve a shared goal [13]. The methodology
has demonstrated exceptional performance in
teams ranging from 5 to 7 individuals, a
versatility that extends even to individual
developers.

Scrum unfolds as an iterative software
development model, operating within distinct
roles and responsibilities as shown in Fig. 2. The
model's heartbeat is the "sprint," a fixed
timeframe typically two weeks, during which the
team consistently delivers software products.
This iterative rhythm contributes to the reliability
and regularity of software releases. Primarily
positioned as an ideal choice for short-term
projects, the Scrum model excels in scenarios
where quick adaptability and responsiveness are
paramount. Embracing organization-accepted
practices and garnering approval, Scrum
mitigates the risk of failure, fostering transparent,
reliable, and trusting relations between the
development team and customers. One of
Scrum's distinctive features lies in its client-

centric approach. Clients’ involvement as the
"product owner" ensures they prioritise and
address their most crucial requirements.
Moreover, Scrum allows for dynamic
modifications to requirements throughout the
software development process, aligning the end
product more closely with evolving customer
needs. Scrum is characterised by its emphasis
on flexibility, adaptability, and heightened
productivity. The model guides team members in
delivering superior software products that exhibit
flexibility in accommodating continuous changes
in environmental requirements [14].

Scrum avoids explicitly identifying features,
opting instead for a list of features that can be
dynamically adjusted. Each iteration, or sprint,
typically lasts between one week and one month,
with three to eight sprints preceding the final
product release. This iterative release strategy
contributes to a continuous refinement of the end
product. The Scrum software development
method excels in its focus on client satisfaction
through iterative cycles known as sprints. Each
sprint integrates all software development life
cycle phases, including designing,
implementation, testing, and customer review
[15,16].

In conclusion, the Scrum methodology is a
dynamic and adaptable framework that has
significantly influenced the software development
landscape. Its collaborative ethos, iterative
approach, and client-centric focus position it as a
powerful tool for teams navigating the
complexities of modern software engineering.

Fig. 2. The Scrum Software Development Cycle

Tetteh; Asian J. Res. Com. Sci., vol. 17, no. 5, pp. 30-42, 2024; Article no.AJRCOS.113678

34

5. EXTREME PROGRAMMING (XP)

Extreme Programming (XP) is a prominent
member of agile software methodologies aimed
at revolutionising software development practices
to enhance quality and responsiveness to
evolving customer requirements, as in Fig. 3
below. Rooted in a set of foundational principles,
XP embodies a paradigm shift from traditional
software development models, emphasising
customer-centricity, transparency, and
adaptability throughout the development
lifecycle. XP emerged as a response to the
shortcomings of conventional software
development methodologies. It acknowledges
the inherent uncertainty in comprehending all
functionalities and qualities of complex software
systems upfront, advocating for continuous
refinement and adaptation as projects progress
[17].

At its core, XP embraces key principles
underpinning its software development
approach. These principles include prioritising
customer feedback, embracing simplicity,
and welcoming change as integral aspects of the
development process. By fostering a
culture of collaboration and openness, XP
enables teams to respond effectively to evolving
requirements and challenges. Designed with
small teams in mind, XP thrives in environments
where two to ten members collaborate on
complex projects. By promoting close
collaboration and informal communication
channels, XP empowers developers to focus on

delivering value rather than navigating
bureaucratic processes [18].

In XP, the primary objective is to ensure the
success of software development initiatives. This
overarching goal permeates every facet of the
methodology, driving teams to prioritise
continuous improvement, adaptability, and
responsiveness to changing requirements.
Extreme Programming embodies several core
features that distinguish it within the agile
landscape. These include small iterations with
rapid feedback loops, active customer
involvement throughout the development cycle,
persistent communication and organisation,
continuous refactoring to enhance code quality,
seamless integration and testing processes,
collective code ownership, and the practice of
pair programming [19].

XP unfolds four phases: Design, Code, Test, and
Release. Each phase encapsulates a set of
practices and rituals geared toward achieving the
overarching goals of the methodology: judicious
distribution of effort, cost-effective refactoring,
and the delivery of correct, high-quality software
products within the constraints of small-scale
teams. Extreme Programming represents a
holistic approach to software development that
prioritises collaboration, adaptability, and
relentless pursuit of software development
success. Its emphasis on customer satisfaction,
iterative refinement, and close-knit team
dynamics make it a compelling choice for teams
navigating the complexities of modern software
engineering [20].

Fig. 3. Extreme Programming Model

Tetteh; Asian J. Res. Com. Sci., vol. 17, no. 5, pp. 30-42, 2024; Article no.AJRCOS.113678

35

6. FEATURE DRIVEN DEVELOPMENT
(FDD)

Introduced in 1997, Feature-Driven Development
(FDD) emerged as a pivotal component of
lightweight, iterative software development
methodologies, as shown in Fig. 4 below. FDD
represents an iterative and incremental approach
to software development, amalgamating the best
practices from manufacturing into a cohesive
method tailored for software engineering
projects. Central to FDD are five fundamental
features: advance model, construct feature list,
plan feature, design by feature, and build by
feature.

FDD epitomises a process-oriented and client-
centric agile methodology, placing paramount
importance on aligning software development
activities with client needs and expectations. By
adhering to a structured process flow, FDD aims
to deliver software solutions that resonate closely
with client requirements while focusing on quality
and efficiency. One of the defining characteristics
of FDD is its adaptive and incremental nature,
which enables the implementation of essential
functionality within short, manageable iterations.
This iterative approach allows development
teams to respond dynamically to evolving project
requirements and stakeholder feedback,
fostering agility and responsiveness throughout
the development lifecycle [3].

At its core, FDD emphasises the significance of
design and quality in software development
endeavours. By prioritising meticulous design
practices and a relentless pursuit of quality, FDD
endeavours to deliver frequent and tangible

working results at each stage of the system's
delivery. This focus on design integrity and
quality assurance underpins the methodology's
commitment to producing robust and reliable
software solutions. FDD provides a structured
framework for precise and meaningful
advancement throughout software development.
By leveraging comprehensive feature lists and
well-defined development plans, FDD enables
development teams to navigate complex projects
with minimal overhead and disruption. This
streamlined approach fosters clarity,
transparency, and efficiency, empowering
designers to make informed decisions and
prioritise tasks effectively [21].

FDD distinguishes itself significantly from other
methodologies in the development context by its
strong emphasis on upfront planning and design.
Unlike agile methodologies prioritising flexibility
and adaptability over formal planning, FDD
advocates for a systematic approach to project
initiation and requirements analysis. By laying a
robust foundation through meticulous planning
and design, FDD sets the stage for successful
project execution and delivery [4].

In summary, Feature-Driven Development (FDD)
is a comprehensive and structured software
development approach characterised by its
process-oriented, client-centric philosophy,
adaptive nature, emphasis on design and quality,
and meticulous planning practices. As software
engineering landscapes evolve, FDD remains a
compelling choice for teams seeking a
systematic and disciplined approach to project
delivery.

Fig. 4. Feature Driven Development Model

Tetteh; Asian J. Res. Com. Sci., vol. 17, no. 5, pp. 30-42, 2024; Article no.AJRCOS.113678

36

7. DEVELOPMENT SYSTEM
DEVELOPMENT METHODOLOGY
(DSDM)

Dynamic Systems Development Methodology
(DSDM) is a structured software delivery
approach widely adopted for developing software
packages and non-IT solutions across various
domains. It responds to common pitfalls
observed in information technology projects,
including budget overruns, missed deadlines,
and inadequate customer involvement.

DSDM principles revolve around several core
tenets aimed at driving successful project
outcomes. These principles include a sharp
focus on business requirements, timely delivery
of software solutions, collaborative teamwork,
unwavering commitment to quality, incremental
development from solid foundations, iterative
progress, continuous communication, and
effective project control. The DSDM approach
offers a comprehensive framework for
developing and maintaining software systems
that ensure adherence to project schedules
through incremental, iterative prototyping within a
well-organized project environment as is shown
in Fig. 5. By structuring development efforts
around these principles, DSDM seeks to
streamline the software delivery process and
mitigate project risks effectively [22].

At the heart of DSDM lies a functionality-centric
approach to software development, whose
primary focus is delivering functional components

within predetermined timeframes and resource
constraints. Unlike traditional models that fix time
and resources and adjust functionality
accordingly, DSDM prioritises functionality,
adapting time and resources as necessary to
achieve project goals. DSDM is widely regarded
as a pioneering agile software development
methodology rooted in the rapid application
development paradigm. It proactively responds to
software development teams' collective
challenges, particularly project delivery delays
and budget overruns [19].

DSDM offers several advantages, including
enhanced project transparency, improved
stakeholder collaboration, and a structured
approach to risk management. Its proactive
stance towards addressing common project
pitfalls has led to widespread adoption across
diverse industries seeking to streamline their
software development processes and deliver
value-added solutions to end-users [23].

In summary, Dynamic Systems Development
Methodology (DSDM) represents a
comprehensive and structured approach to
software delivery. It is characterised by its
adherence to core principles, functionality-centric
focus, and proactive stance towards addressing
project challenges. As organisations increasingly
prioritise agility and efficiency in their software
development endeavours, DSDM is a compelling
choice for teams seeking to achieve timely, high-
quality project outcomes.

Fig. 5. Development System Development Methodology

Tetteh; Asian J. Res. Com. Sci., vol. 17, no. 5, pp. 30-42, 2024; Article no.AJRCOS.113678

37

8. KANBAN

Kanban, rooted in the Japanese term for visual
signs or cards, represents a visual framework
utilised to implement Agile principles in software
development and other industries. It revolves
around the philosophy of Just in Time, aiming to
produce the required product of the utmost
quality at the precise time and place. At its core,
Kanban emphasises workflow visualisation,
production duration, and production quantity. It
encourages development teams to streamline
project workflows, minimise work in progress
(WIP) at each stage, and quantify iterations.
Unlike rigid methodologies, Kanban inspires
incremental modifications within the existing
system, fostering adaptability and continuous
improvement, as can be seen in Fig. 6 [2].

The versatility of Kanban extends beyond
software development, finding applications in
manufacturing, logistics, and supply chain
management. Its ability to reduce over-
production, unnecessary motion, defects,
processing, and waiting times has earned it
recognition and adoption across diverse systems
and industries. A central tenet of Kanban is the
management of work-in-progress (WIP) during
development. By visualising and mitigating WIP,
teams can streamline workflows, prioritise tasks
effectively, and enhance productivity [24]. This
approach enables precise scheduling and timely
delivery of software products to customers,
aligning with Agile responsiveness and customer
satisfaction principles. Organisations worldwide
are increasingly embracing Kanban and
integrating it into their existing software
development processes to enhance business
agility. Kanban mitigates risks, fosters flexibility,
and optimises project resource allocation by
focusing on the most critical tasks requiring
immediate attention [16,25].

In essence, Kanban is a dynamic and
adaptable framework that empowers teams to
optimise workflows, minimise waste, and deliver
customer value efficiently. Its emphasis on
visualisation, incremental improvement,
and work-in-progress management
makes it a valuable tool for organisations
seeking to achieve greater agility and
responsiveness in today's fast-paced business
environment.

9. ADAPTIVE SOFTWARE DEVELOP-
MENT

Adaptive Software Development (ASD),
pioneered by James A. Highsmith, represents a
dynamic approach to software development
characterised by agility, rapid adaptation, and
iterative progress, as shown in Fig. 7. ASD
embodies the principles of agile methodology
while addressing the challenges posed by high-
speed and high-change environments in software
projects.

ASD is a tailored iteration of the extreme
programming model, one of the most
prevalent agile methodologies. Unlike traditional
approaches, ASD specifically targets the
complexities inherent in large-scale software
development endeavours. Its core principles
revolve around progressive, stage-wise
development supported by stable prototyping
techniques. ASD provides a structured
framework or methodology that offers sufficient
guidance to navigate projects with inherently
uncertain requirements. Traditional
methods often falter in environments marked by
frequent changes in business requirements and
rapidly evolving markets. ASD, however,
thrives in such dynamic settings by
embracing uncertainty and facilitating adaptability
[26].

Fig. 6. Kaban Software Development Model

Tetteh; Asian J. Res. Com. Sci., vol. 17, no. 5, pp. 30-42, 2024; Article no.AJRCOS.113678

38

Fig. 7. Adaptive Software Development Model

At the heart of ASD lies continuous learning and
extreme teamwork among developers, testers,
and customers. Unlike methodologies that
prioritise tasks, ASD strongly emphasises
products and their quality. It fosters a culture of
collaboration, where stakeholders engage in
iterative development, testing, and refinement
cycles to deliver high-quality software solutions.
ASD advocates for incremental and iterative
development methodologies complemented by
continuous prototyping. This approach allows
teams to respond swiftly to changing
requirements and market dynamics while
ensuring that software products evolve in
alignment with stakeholder expectations [27].

In summary, Adaptive Software Development
(ASD) represents a paradigm shift in software
development methodologies, offering a flexible
and adaptive framework for addressing the
challenges of today's dynamic business
landscape. With its focus on continuous learning,
collaboration, and iterative progress, ASD
empowers teams to deliver high-quality software
solutions in the face of uncertainty and change.

10. COMPARATIVE ANALYSIS OF AGILE
METHODOLOGIES

In the realm of software development, choosing a
suitable methodology is paramount to project
success. With the proliferation of agile methods,
it becomes crucial to conduct a comparative
analysis to determine which approach best suits
a project’s unique requirements. Several factors,
including project complexity, size, budget, and
time constraints, play a significant role in
methodology selection.

11. DOCUMENTATION PRACTICES

Agile methodologies prioritise minimising
documentation to focus on delivering working

software efficiently. While documentation
remains essential, its extent varies across
methods. Scrum, XP, and ASD emphasise
minimal documentation, prioritising direct
communication and working software over
extensive paperwork. In contrast, FDD involves
more documentation to support its feature-driven
approach. DSDM and Kanban strike a balance,
requiring moderate documentation compared to
FDD.

12. PROJECT COMPLEXITY AND SIZE

Different methodologies are tailored to suit
projects of varying complexity and size. Kanban,
XP, and ASD are well-suited for simple, small-
scale projects with evolving requirements. These
methodologies excel in environments where
flexibility and adaptability are paramount. Scrum,
FDD, and DSDM cater to projects spanning a
broad spectrum of complexity, from simple to
highly intricate.

13. CUSTOMER INVOLVEMENT AND
INTERACTION

Agile methodologies place a strong emphasis on
customer involvement throughout the
development process. XP and Scrum foster
extensive customer interaction, integrating
feedback iteratively to ensure alignment with
user needs. ASD and DSDM involve clients
primarily at the outset and conclusion of
iterations, maintaining a continuous feedback
loop. Kanban facilitates communication through
the product owner, while FDD relies on detailed
reports to engage with customers.

14. MEETINGS AND COMMUNICATION

Effective communication among team members
is foundational to the success of agile
methodologies. Meetings are informal and

Tetteh; Asian J. Res. Com. Sci., vol. 17, no. 5, pp. 30-42, 2024; Article no.AJRCOS.113678

39

Table 1. Comparison of various agile methods

Factors Scrum XP FDD DSDM ASD Kanban

Suitable project size and
complexity

large and complex
problems

Small and simple
project

Large scale
projects

Complex,
simple project.

Small and
simple project

Small and
simple project

Documentation Simple and Basic Simple and Basic More than XP,
Scrum, Kanban

Highest among
all

Moderate Moderate

Team work 5 to 7 members 2 to 12 members 4 - 20 but
fluctuates with
complexity

Not specifically
address

Not specifically
address

Not specifically
address

Changes with an Iteration Not allowed Allows within their
iterations

Allows continually Allows and
reverse

Expected and
welcomed

Any time

Transparency Transparent. Transparent. Transparent. Transparent. Transparent. Highly
Transparent

Approach Iterative,
Incremental

Iterative,
Incremental

Iterative Iterative Iterative,
Incremental

Iterative,
Incremental

Iteration cycle period 2-4 weeks 1-6 weeks

2 days-2weeks In 20% of total
time 80 % of
product

4-8 weeks 2 to 4 weeks but
focus on
continues flow

Concurrent feature development Possible Possible Possible Possible Possible Possible

Major Practices Scrum meetings Simplicity, Pair
programming Test
driven
development

Object Modeling,
Development by
feature, use of
UM l diagram

Time boxing,
Moscow,
Prototyping

Time boxing,
Risk Driven,
Feature based.

Visualizing
processes

User involvement Through product
owner

Actively involved Through reports Through
frequent
releases

Through frequent
releases

Through product
owner

Tetteh; Asian J. Res. Com. Sci., vol. 17, no. 5, pp. 30-42, 2024; Article no.AJRCOS.113678

40

collaborative, promoting open dialogue and
problem-solving. XP encourages pair
programming, fostering direct communication
and knowledge sharing among developers. FDD
and DSDM rely on documentation and reports to
facilitate communication, ensuring clarity and
alignment. Scrum and ASD prioritise face-to-face
interactions, leveraging visualisations and
discussions to convey project progress and
challenges. Kanban employs visual cues to
streamline workflow management, enhancing
communication and coordination among team
members.In conclusion, a comprehensive
understanding of various agile methodologies'
distinct characteristics and practices is essential
for selecting the most suitable approach for a
given project. By considering factors such as
documentation requirements, project complexity,
customer involvement, and communication
practices, project teams can make informed
decisions to optimise software development
processes and outcomes.

15. CONCLUSION

Agile methodologies have mainly been used for
developing software recently compared to
traditional software development methodologies.
Traditional development practice has countless
limitations, which include being unable to adapt
to common changes in user requirements and
being incapable of working within a specific time
frame and budget. Software development
methodologies play a significant role in every
software project. Change is necessary in
software development activity and can occur due
to constant changes in user requirements, which
makes the agile method the most comprehensive
methodology to be adopted.
expectedrequirements must be specified clearly
before development in traditional software
development because it does not adhere to
frequent changes. Considering the changing
business environment, it is vital that the
development methodology used easily adapts to
the frequent changes in end-user demands.
However, we discussed six agile methods:
Scrum, XP, FDD, DSDM, ASD and Kanban. We
strongly believe choosing the best method out of
the rest for a specific project is paramount.

16. FUTURE DIRECTIONS IN AGILE

SOFTWARE DEVELOPMENT

Future directions for the agile software
development model are poised to evolve in

response to emerging trends and challenges in
the software development landscape. Several
key areas warrant attention and innovation
further to enhance the effectiveness and
applicability of agile methodologies:

• Scaling Agile Practices: As organisations

increasingly adopt agile methodologies
across larger teams and complex
projects, there is a growing need to scale
agile practices effectively. Future
directions may focus on developing
frameworks and tools tailored to support
scalability while preserving agility and
collaboration across distributed teams.

• Integration with DevOps: Integrating
agile principles with DevOps practices is
gaining momentum, aiming to streamline
the software development lifecycle and
enhance collaboration between
development and operations teams.
Future directions may explore deeper
integration between agile and DevOps
methodologies to facilitate continuous
software solution integration, delivery,
and deployment.

• Agile for Non-Software Projects: While
agile methodologies have traditionally
been associated with software
development, there is increasing interest
in applying agile principles to non-
software projects across various
industries. Future directions may involve
adapting agile practices to domains such
as marketing, finance, and project
management to improve agility,
responsiveness, and customer value
delivery.

• Enhanced Data-Driven Decision Making:
Agile methodologies emphasise
empirical feedback and continuous
improvement. Future directions involve
leveraging advanced analytics, machine
learning, and artificial intelligence
techniques to derive actionable insights
from project data. This data-driven
approach can enable teams to make
informed decisions, optimise processes,
and enhance project outcomes.

• Focus on Team Dynamics and Well-
being: The success of agile teams
hinges on effective collaboration,
communication, and team dynamics.
Future directions may prioritise initiatives
to foster psychological safety, diversity,
inclusion, and well-being within agile
teams. Emphasising team cohesion and

Tetteh; Asian J. Res. Com. Sci., vol. 17, no. 5, pp. 30-42, 2024; Article no.AJRCOS.113678

41

satisfaction can increase productivity,
creativity, and project success.

• Adapting to Remote Work Environments:
The global shift towards remote work has
necessitated adaptations in agile
practices to accommodate distributed
teams and virtual collaboration. Future
directions may explore innovative
approaches, tools, and techniques for
facilitating effective remote agile
ceremonies, communication, and
cooperation while maintaining team
cohesion and productivity.

• Continuous Evolution of Agile Principles:
Agile methodologies are founded on
adaptability, responsiveness, and
continuous improvement principles.
Future directions will likely involve
evolving and refining agile principles to
address emerging challenges, seize
opportunities, and accommodate
evolving business and technology
landscapes.

In conclusion, the future of agile software
development holds promising avenues for
innovation, collaboration, and continuous
improvement. By embracing emerging trends
and challenges, agile methodologies can
continue to serve as a cornerstone for delivering
high-quality, customer-centric software solutions
in an ever-changing world.

COMPETING INTERESTS

The author has declared that no competing
interests exist.

REFERENCES

1. Butt SA. Paci fi c Science Review B :
Humanities and Social Sciences Study of
agile methodology with the cloud, Pacific
Sci. Rev. A Nat. Sci. Eng. 2016;2(1):22–
28.

2. Saleh SM, Rahman MA, Asgor KA.
Comparative Study on the Software
Methodologies for Effective Software
Development. International Journal of
Scientific & Engineering Research.
2017;8(4):April-2017, no. May..

3. Nawaz Z, Aftab S, Anwer F. Simplified
FDD Process Model, I.J. Mod. Educ.
Comput. Sci. 2017, 9, 53-59 Publ. Online
Sept. 2017 MECS
DOI 10.5815/ij, no. September, pp. 53–59,
2017.

4. Shama PS. A Review of Agile Software
Development Methodologies, Int. J. Adv.
Stud. Comput. Sci. Eng. IJASCSE
2015;4(11). 2015;4(11):1–6.

5. Qureshi MRJ. An adaptive software
development process model," no. August
2008; 2018.

6. Ibrahim M, Khan MJ, Salam A.
Comparative analysis of scrum and XP in
Pakistani software industry.
2017;2(3):199–215.

7. A. Model. A Survey of Agile Development
Methodologies. 2007;209–227.

8. Khan A. The Impact of Agile Methodology (
DSDM) on Software Project Management
The Impact of Agile Methodology (DSDM)
on Software Project Management," no;
March, 2018.

9. Moniruzzaman ABM, Hossain SA.
Comparative Study on Agile Software
Development Methodologies," no. May
2014; 2013.

10. Iyawa GE, Coleman A. Customer
Interaction in Software Development: A
Comparison of Software Methodologies
Deployed in Namibian Software Firms.
2016;1–13.

11. Kumar G. Comparative Analysis of
Software Engineering Models from
Traditional to Modern Methodologies;
2014.

12. Blom M. Is Scrum and XP suitable for CSE
Development ? Procedia Comput. Sci.
2012;1(1):1511–1517.

13. Umbreen M, Abbas J, Shaheed SM. A
Comparative Approach for SCRUM and
FDD in Agile. 2015;2015(2):79–87.

14. Kumari U, Upadhyaya A. Comparative
Study of Agile Methods and Their
Comparison with Heavyweight Methods in
Indian Organizations. 2013;6:June.

15. Aitken A. A Comparative Analysis of
Traditional Software Engineering and Agile
Software Development; 2013.

16. Matharu GS. Empirical Study of Agile
Software Development Methodologies : A
Comparative Analysis," no. May 2019;
2015.

17. Fojtik R. Procedia Computer, Procedia
Comput. Sci. 2011;3:1464–1468.

18. Maurer F, Martel S. Extreme
Programming,” no. February; 2002.

19. Abrahamsson P, Warsta J, Siponen MT,
Ronkainen J. New Directions on Agile
Methods : A Comparative Analysis; 2003.

20. Qureshi MRJ. Comparison Of Agile
Process Models To Conclude The

Tetteh; Asian J. Res. Com. Sci., vol. 17, no. 5, pp. 30-42, 2024; Article no.AJRCOS.113678

42

Effectiveness Comparison Of Agile
Process Models To Conclude The
Effectiveness For Industrial Software
Projects," no. December; 2016.

21. Bukhari JA, Shaheed SM. A Comparative
Approach for SCRUM and FDD in Agile,"
no. January; 2016.

22. Sani A, Firdaus A. A Review on Software
Development Security Engineering using
Dynamic System Method (DSDM).
2013;69(25):37–44.

23. Chapram SB. An appraisal of agile DSDM
approach. 2017;4(3):512–515.

24. Wakode RB, Raut LP, Talmale P.
Overview on Kanban Methodology and its
Implementation. 2015;3(2):2518–2521.

25. Lei H, Ganjeizadeh F, Jayachandran PK,
Ozcan P. Robotics and
Computer-Integrated Manufacturing Full
length Article A statistical analysis
of the effects of Scrum and Kanban on
software development projects, Robot.
Comput. Integr. Manuf. 2017;43:
59–67.

26. Kaushik A. DSDM and ASD
Agile Methodologies. 2016;3(9):2393–
2394.

27. Merzouk S, Elhadi S, Ennaji H, Marzak A,
Sael N. A Comparative Study of Agile
Methods : Towards a New Model-based
Method. Int. J. Web Appl. Vol. 9 Number 4
December 2017;9(4):121–128.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/113678

http://creativecommons.org/licenses/by/4.0

