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Abstract: To address the challenges of handling imprecise building boundary information and
reducing false-positive outcomes during the process of detecting building changes in remote sensing
images, this paper proposes a Siamese transformer architecture based on a difference module. This
method introduces a layered transformer to provide global context modeling capability and multiscale
features to better process building boundary information, and a difference module is used to better
obtain the difference features of a building before and after a change. The difference features before
and after the change are then fused, and the fused difference features are used to generate a change
map, which reduces the false-positive problem to a certain extent. Experiments were conducted on
two publicly available building change detection datasets, LEVIR-CD and WHU-CD. The F1 scores
for LEVIR-CD and WHU-CD reached 89.58% and 84.51%, respectively. The experimental results
demonstrate that when utilized for building change detection in remote sensing images, the proposed
method exhibits improved robustness and detection performance. Additionally, this method serves
as a valuable technical reference for the identification of building damage in remote sensing images.

Keywords: Siamese transformer network; building change detection; difference comparison; remote
sensing image

1. Introduction

Change detection in remote sensing images refers to the identification of changes in
objects or phenomena of interest in a scene by comparing multitemporal remote sensing
images captured at different times in the same geographic area. This technique can be
applied to various application domains, such as urban planning, disaster management,
agricultural surveys, and environmental monitoring.

Most early change detectors in remote sensing images were designed with the help of
manual features and supervised classification algorithms. However, deep learning technol-
ogy has developed rapidly in recent years, especially deep convolutional neural networks
(CNNs), which can learn data representations with multiple levels of abstraction [1] and
have been widely used in computer vision [1] and remote sensing [2]. Thus, many current
change detection algorithms are based on deep learning [3] and demonstrate better perfor-
mance than that of traditional methods. These deep learning methods can be broadly catego-
rized into two groups: metric-based methods [4–6] and classification-based methods [7–10].

Metric-based approaches identify changes by assessing the parametric distance be-
tween dual-temporal data. These methods need to learn a parameterized embedding
space, where similar or unchanged samples are clustered together in the embedding vector
space, while different or changing samples are spread further apart. This approach helps to
clearly distinguish samples of different categories or characteristics in the embedding space.
The embedding space can be learned through deep Siamese fully convolutional networks
(FCNs) [4,5]; “Siamese networks” refer to neural network architectures that learn to differ-
entiate between two different inputs. The name “Siamese” originates from the concept of

Sensors 2024, 24, 1268. https://doi.org/10.3390/s24041268 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24041268
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6320-9635
https://orcid.org/0000-0002-7839-1502
https://doi.org/10.3390/s24041268
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24041268?type=check_update&version=1


Sensors 2024, 24, 1268 2 of 18

Siamese twins, as these networks are designed to share the same weights and architecture,
effectively creating a mirrored structure. By simultaneously processing two inputs and then
comparing their outputs, Siamese networks can determine the similarity or dissimilarity
between the inputs. Siamese networks have been widely used in various applications,
including signature verification, facial recognition, and similarity-based tasks such as image
and text matching. In the context of remote sensing and image analysis, Siamese networks
have been applied to tasks such as change detection, where they can effectively compare
two images captured at different times to identify the differences between them or changes
in the observed scene. This refers to a system comprising two identical networks with
shared weights. Each network autonomously produces feature maps for individual tempo-
ral images. The metric comparing the features of each point pair is employed to determine
if a change has occurred. The difference module employs an optimal metric method by
comparing bitemporal images, and the Euclidean distance between the feature maps of the
Siamese networks is calculated on a per-pixel basis, generating a difference feature map.

Classification-based methods determine the type of change by categorizing features
extracted from two different time periods. Typically, a common approach involves assigning
a change score to every location within an image, and the scores of changed locations are
higher than those of nonchanged locations. CNNs have been widely used to extract feature
representations of images [7–9,11]. By combining classification-based methods with the
feature extraction capabilities of convolutional neural networks (CNNs), it is possible to
more accurately identify and understand categories of variation in bichronological data.

In high-resolution remote sensing images, building changes can be monitored at a
detailed scale. Deep convolutional networks [12] (ConvNets) are capable of extracting
powerful discriminative features from these images. Currently, cutting-edge change de-
tection methods primarily rely on deep convolutional networks. Since the capture of
long-range context information in space and time is critical for identifying relevant changes
in multitemporal images, the latest change detection research has focused on increasing the
receptive field of change detection models [13,14]. Hence, change detection models [15]
have been introduced. These models incorporate layered convolutional structures, dilated
convolution operations [16,17], and a range of attention mechanisms [18,19]. In line with
the transformer [20] architecture introduced in natural language processing, a variety of
designs have been suggested for a range of computer vision tasks. These tasks encompass
image classification and image segmentation, with examples such as the vision transformer
(ViT) [21] and segmentation transformer (SETR) [22]. Transformer networks exhibit larger
effective receptive fields than deep convolutional neural networks, providing stronger
global context modeling ability than that of a CNN between any pair of pixels in an image.
Dosovitskiy et al. introduced the ViT for image classification. The authors, inspired by the
design of the transformer in natural language processing, divided each image into several
small patches with linear embeddings. These patches were then fed into the standard
transformer with position embeddings, resulting in a remarkably strong performance on
ImageNet [23]. In the realm of semantic segmentation, Zheng et al. proposed the SETR
to demonstrate the viability of employing a transformer for this task. However, these
models usually generate more redundant and false-positive outcomes; while the ViT has
demonstrated strong performance in vision tasks, the limitations of outputting single-scale
low-resolution features hinder the model’s further enhancement in the domain of change
detection in remote sensing images. Therefore, it is crucial to explore methods for extract-
ing superior multiscale features within an appropriate range for effective building change
detection, as features at different scales can better process building boundary information.

To address the problem of rough boundary information processing and the presence of
errors in the task of building change detection by the above methods, a Siamese transformer
network structure utilizing a difference module is suggested for detecting changes in remote
sensing images. This method mainly contributes to the following three points.

(1) A Siamese layered transformer feature extractor is used to better extract multiscale
features of buildings in dual-temporal remote sensing images;
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(2) A metric-based feature difference module is used to calculate the multiscale feature
differences of buildings;

(3) A lightweight decoder is used to fuse multilevel feature differences of buildings and
predict whether these buildings have changed in remotely sensed images.

2. Algorithm Design
2.1. Overall Architecture

Given a pair of dual-temporal remote sensing images as the model input, a layered
Siamese transformer feature extractor generates multiscale features from the target building,
and the input of the difference module at the i-th layer corresponds to the feature associated
with that layer. The feature difference module calculates the features. The difference feature
map for the building before and after a change are derived by calculating the Euclidean
distance between pixels in the map. Ultimately, the change map is acquired following
processing by the decoder, as shown in Figure 1.

Figure 1. Overall network architecture.

2.2. Encoder

First, the input remote sensing image is segmented into nonoverlapping patches.
Here, each patch can be considered an ordered input unit, whose feature is set to the
concatenation of the RGB values of the original pixel. In this paper, each patch is set to be
smaller because it is more conducive to the intensive task of detecting buildings. In actual
operation, the 4 × 4 patch is used as the basic unit of sequence input. Therefore, the feature
dimension of each patch is 4 × 4 × 3 = 48, and these original features can be projected to
any dimension after passing a linear projection layer.

2.2.1. Patch Merging Block

The idea of patch merging is to cut the input image into multiple patches and merge the
patches into a larger representation. This process is performed at multiple levels to extract
high-level semantic information in remote sensing images. Patch merging can capture the
local information of remote sensing images at multiple scales, thus helping the model learn
richer and more discriminative feature representations. The spatial resolution in remote
sensing refers to the level of detail or granularity of the information that can be captured
in an image. It is typically expressed in terms of the size of the smallest discernible image
feature, which is often measured in meters per pixel. The spatial resolution influences
the amount of contextual information that is available to the model. Higher-resolution
images provide more context, enabling the model to make more informed decisions about
building changes.

To generate multiscale features, as the network continues to deepen, the number of
patches is reduced through the patch merging module. The given resolution is H

2i+1 × W
2i+1 × Ci
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for i-th layer input. Through patch merging, the resolution becomes H
2i+2 × W

2i+2 × Ci+1 for
the i + 1-th layer input. Four times the combination rate was used in the first stage, and
two times the combination rate was used in the next three stages. The latter three stages
are shown as an example in Figure 2.

Figure 2. Patch merging process.

In this stage, we want to conduct merging at a doubled rate, so we select points every
other point, which means that for this tensor, we select points a, a, a, and a each time. The
a, b, c, and d items in the figure are not values in the matrix but rather ordinal numbers
that we use to make this process easier for the reader to understand. Patches with the
same ordinal number are then merged together. After this spaced sampling procedure, the
original tensor becomes four tensors. The size of each tensor is H

2 × W
2 . The tensors are then

spliced in the dimension of C, and the tensor size becomes H
2 × W

2 × 4C, exchanging spatial
dimensionality for a greater number of channels. This process is very similar to the pooling
operation in a convolutional neural network. The image changes from the initial 4 × 4 × C
to 2 × 2 × 4C. As the network continues to deepen, features of more scales are formed, and
the following resolutions can be obtained: H

4 × W
4 , H

8 × W
8 , H

16 × W
16 , and H

32 × W
32 .

2.2.2. Siamese-Layered Transformer Block

In the Siamese transformer architecture, each part has four transformer blocks, and
each layer of the transformer can generate building features at different scales. The input
patches of each layer are processed through patch merging and transformer blocks to gener-
ate building features at different scales. These four components produce features with sizes
of H

4 × W
4 , H

8 × W
8 , H

16 ×
W
16 , and H

32 ×
W
32 . The layered features consist of both high-resolution

coarse-grained features and low-resolution fine-grained features, and these features are
utilized in pairs. The features at different levels serve as input to the difference module
for further learning of differential features. The standard transformer architecture and its
processing on images both use global attention, and the relationship between one patch
and all other patches is calculated. Globally, a complexity equivalent to the square of the
number of patches is incurred. For better supporting the application device and for the sake
of our training work, we crop the input image to 256 × 256 pixels as the initial input values
for the model. The length of the patch input sequence in the first layer is 256

4 × 256
4 = 4096.

The computational complexity of using such a sequence length as a global self-attention
mechanism is usually very high. Therefore, the block-level scope-based method is used to
calculate the self-attention. The initial stage is chosen as an example below. The dimension
of the feature tensor is H

4 × W
4 × C, which is divided into a number of small scopes, each

with N × N patches, and self-attention is performed for each scope, effectively reducing
the computational complexity. Sequence length is effectively reduced. Although a lower
computational cost is achieved through the block-level scope self-attention mechanism, the
scopes are isolated, and the advantage of using the transformer’s global modeling ability is
lost. Therefore, after using the block-level scope self-attention mechanism, a scope move
operation is performed to enable information interaction between block-level scopes. As
the network continues to deepen, this method can achieve approximate global modeling.
Figure 3 shows the transformer block structure.

In Figure 3, BL-SA represents the self-attention module based on block-level scopes,
SBL-SA represents the translation operation conducted on the block-level scopes, which are
used to better achieve the effect of global modeling, and the MLP layer is used to perform
nonlinear transformations and mappings on features.
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Figure 3. Transformer block structure.

The calculation process of the entire transformer block is as follows:

ŷt = BL − SA(LN(yt−1)) + yt−1 (1)

yt = MLP(LN(ŷt)) + ŷt (2)

ŷt+1 = SBL − SA(LN(yt)) + yt (3)

yt+1 = MLP(LN(ŷt+1)) + ŷt+1 (4)

Equation (1): This equation represents the self-attention (SA) module in a regular
block-level scope configuration. It applies layer normalization (LN) to the input features
yt−1, performs self-attention computations using the BL-SA module, and then sums the
residual connections yt−1 derived from the previous layer.

Equation (2): This equation involves applying a multilayer perceptron (MLP) with
GELU nonlinearity to the BL-SA module output. Layer normalization is applied again, and
the result is summed with the output ŷt of the BL-SA module via a residual connection.

Equation (3): This equation represents the self-attention (SBL-SA) module with a
sliding block-level scope. It applies layer normalization to the output yt of the previous
MLP layer, performs self-attention computations using the SBL-SA module with a sliding
configuration, and sums the residual connections yt derived from the previous layer.

Equation (4): This equation involves applying a multilayer perceptron (MLP) with
GELU nonlinearity to the SBL-SA module output. Layer normalization is applied, and
the result is summed with the output of the SBL-SA module possessing ŷt+1 through a
residual connection.

ŷt and yt represent the outputs of the block-level self-attention (BL-SA) and multi-
layer perceptron (MLP) modules and the characteristic outputs of the SBL-SA and MLP
modules, respectively.

2.2.3. Difference Module

Metric-based deep learning has been applied in a wide range of remote sensing
applications, demonstrating improved performance in change detection methodologies
rooted in metric learning. In the context of metric-based deep learning, a network is guided
to acquire the nonlinear mapping from the input to the embedding space. In this embedded
vector space, akin or unaltered samples are close to one another, whereas disparate or
evolving samples are distributed at a greater distance from each other.

Four difference modules are used to calculate the multilevel difference of the changed
images before and after the layered transformer encoder. In this paper, the role of the
difference module is to learn the optimal metric of the difference characteristics of buildings
at each scale during the training process.
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In remote sensing-based image building change detection tasks, the feature maps
Fi

be f ore and Fi
a f ter give the multiscale features of a building at a certain level. Each pixel

in these feature maps contains information about the corresponding position in the im-
age. When calculating the differences between feature maps, usually, the pixels at the
corresponding locations are subject to difference calculations. The Euclidean distance
is a method that is used to measure the straight-line distance between two points. For
each corresponding pixel value at each position (pixel), the Euclidean distance is cal-
culated as follows. For two feature maps Fi

be f ore and Fi
a f ter, at the same position (the

corresponding pixel position), their pixel values are taken as Pbe f ore and Pa f ter. The Eu-
clidean distance at the corresponding position is calculated with the following formula:

Euclidean Distance =
√
(Pbe f ore − Pa f ter)

2. This calculated Euclidean distance constitutes
a single pixel value of the difference feature map D. The above steps are repeated to
iterate through all the pixels of the feature map for obtaining the complete difference
feature map D.

The difference feature map D reflects the feature differences exhibited by the building
at different points in time, and the computation of the Euclidean distance helps the model
learn to differentiate between neighboring and nonneighboring pixels via the contrast loss
during the training phase, thus improving the accuracy of the change detection process.

Given the multiscale feature map of the i-th layer Fi
be f ore, Fi

a f ter, the Euclidean distance
between the feature map pixels is calculated to generate the difference distance map
D ∈ RHi×Wi , where Wi and Hi represent the width and height of the input image at the i-th
layer, respectively. In the training stage, the contrastive loss is used to learn the network
parameters so that the adjacent pixels are clustered, while the nonadjacent pixels are
scattered. Then, the change map is derived by applying a consistent threshold value Fi

change.

Fi
change(n, m) =

{
1
0

D(n,m) > θ

else
(5)

where n and m represent the width and height, respectively. θ is a fixed threshold to
distinguish change regions.

In the domain of change detection through remote sensing images, there is a significant
disproportion in the quantities of altered and unaltered samples. Often, the altered pixels
constitute only a small fraction of the total, and during training, there is a potential bias
introduced into the network. To address this class imbalance issue, we employ a batch-
balanced comparative loss. This method leverages batch weight priors to adjust the
category weights within the original contrastive loss. Given a set of bitemporal samples in
a batch (X∗(1), X∗(2), M∗ ∈ RB×Hi×Wi ), a set of distance maps is derived from the difference
module D∗. Here, B denotes the batch size, and M∗ represents a collection of binary label
maps within a batch. The batch balanced comparative loss function can be mathematically
expressed as follows:

L(D∗, M∗) = 1
2

1
nu

∑
b,n,m

(1 − M∗
b,n,m)D∗

b,n,m + 1
2

1
nc

M∗
b,n,m Max(0, k − D∗

b,n,m) (6)

where the subscripts b, n, and m represent the batch size, width, and height, respectively.
If the parametric distance between changed pixel pairs exceeds the threshold value k,
it will not impact the loss function. For this particular task, the threshold k is set to 2.
The threshold “k” acts here as a sensitivity parameter for determining the magnitude
required for a change to be considered significant. The reason for setting the threshold
to 2 is to ensure that the model is able to focus on capturing relatively large changes in
the feature difference maps, which are more likely to correspond to substantial changes
in the corresponding remotely sensed images. This setting helps the model distinguish
between significant changes and noise in the feature difference maps, thus improving the
performance of the model. Adjusting the threshold value “k” can significantly affect the
ability of the model to detect changes in remotely sensed images. Higher thresholds may
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make the model more conservative, as they will focus on substantial changes and reduce
the likelihood of false alarms; however, they may also miss subtle changes. Conversely,
lower thresholds may increase the sensitivity of the model, allowing it to capture smaller
changes; however, the model may also introduce additional noise and false alarms. nu and
nc represent the counts of nonchanged and changed pixel pairs, respectively. These counts
can be computed by summing the corresponding class labels.

nu = ∑
b,n,m

1 − M∗
b,n,m (7)

nc = ∑
b,n,m

M∗
b,n,m (8)

2.3. Decoder

In this paper, a decoder with a streamlined design is employed to combine difference
maps of multiscale building features for change prediction. The proposed decoder obtains
the fused difference feature maps by up-sampling and feature fusion and again undergoes
the inverse convolution to obtain the difference feature maps of the original image size,
and finally, it obtains the segmentation results. This simplified decoder, consisting of only
MLP layers, skillfully avoids the handcrafted and highly computationally demanding
components that are common in other approaches. The successful realization of this simple
decoder is due to three key factors. First, our hierarchical transformer encoder has a larger
effective sensing field than those of other methods and includes more than traditional CNN
encoders. Second, the consistent designs of the decoder and encoder, using the same MLP
and SBL-SA modules, drive the model to be more uniform and efficient during the training
and inference processes. Finally, by simplifying the model structure, the complexity of the
overall architecture is reduced, making the model easier to understand and debug while
improving its scalability for various tasks and application scenarios.

2.3.1. Feature Fusion

Building change detection in remote sensing images is an intensive detection task
in which multiscale feature fusion has a clear advantage. The target objects may have
different sizes and scales. However, multiscale feature fusion enables the model to process
the features of multiple scales simultaneously and thus better detect objects with different
sizes. In addition, multiscale feature fusion helps capture richer contextual information at
different feature levels, enabling the model to better differentiate target objects from the
background in the dense detection task. Finally, multiscale feature fusion helps to improve
the robustness of the model to transformations such as scale change, rotation, and occlusion,
making multiscale feature fusion an important technique in dense detection tasks. The
entire feature fusion process is shown in Figure 4.

In Figure 4, a feature fusion process is presented for predicting changes in multiscale
building features. First, a multiscale feature difference map is obtained from the encoder,
marking the beginning of the fusion process. Next, each multiscale feature disparity map
is processed through the MLP layer to unify the channel dimensions. Subsequently, each
feature disparity map is upsampled and resized to H/4 × W/4. Finally, the upsampled
feature disparity maps are spliced and fused in the MLP layer to obtain the final fusion
result for the feature disparity maps. This process is expressed as follows:

F̃i
change = Linear(Ci, Ck)(Fi

change)∀i (9)

F̂i
change = Upsample((H/4, W/4), bilinear)(F̃i

change) (10)

in which Ck represents the embedding dimension. In Equation (9), the linear operation
denotes a linear transformation of the feature map, which is usually understood as a
fully connected layer or linear projection layer, transforming the input feature map to a
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new feature space. This transformation is crucial for unifying the channel dimensions
of the feature maps, ensuring the compatibility of the subsequent processing and fusion
steps. The upsampling process in Equation (10) involves the use of bilinear interpolation
to increase the spatial resolution of the feature map. Bilinear interpolation is chosen for
upsampling because it effectively preserves the overall structure and details of the feature
map while increasing its dimensions. This interpolation method calculates new pixel values
by computing the weighted average of the four nearest pixels in the original feature map,
resulting in a smooth and visually coherent upsampled image. Alternatives to bilinear
interpolation include nearest-neighbor interpolation, bicubic interpolation, and transposed
convolution (also known as inverse convolution). Nearest-neighbor interpolation simply
copies the nearest pixel values to fill in new pixels, which can lead to blocky artifacts and
detail losses. Bicubic interpolation provides higher-quality information than does bilinear
interpolation but requires additional computational resources.

Figure 4. Feature fusion process.

Finally, the upsampled feature difference maps are spliced and fused in the MLP layer,
thus obtaining the fusion results of the four feature difference maps. Then, S = 4 and K = 3.
The deconvolutional layer operation, which maps the fused features to F upsampling to
the same size as the original image H × W. This process is expressed as follows:

F = Linear(4Ck, Ck)(Cat(F̂1
change, F̂2

change, F̂3
change, F̂4

change)) (11)

F̂ = ConvTranspose2D(S = 4, K = 3)(F) (12)

2.3.2. Segmentation Results

The differentially fused feature map is obtained through feature fusion. Subsequently,
a deconvolution operation is employed to align the size of the feature map with that of the
original input image. The fused features are finally processed through another MLP layer,
and the prediction resolution is H × W × Ncls, where Ncls(= 2) is the number of classes,
that is, changing and not changing. This process can be expressed as:

Mask = Linear(Ck, Ncls)(F̂) (13)

3. Experimental Part
3.1. Dataset Introduction

Two public datasets are used in the experiments, namely, LEVIR-CD [24] and WHU-CD [25].
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LEVIR-CD is an extensive dataset of remote sensing images tailored for the purpose
of change detection. This dataset is usually used to analyze the changes in surface charac-
teristics between different time points, such as building changes, urban sprawl, and river
changes. The LEVIR-CD dataset contains 637 annotated image pairs, and each image pair
contains two high-resolution remote sensing images of Google Earth at times t1 and t2.
These images have a resolution of 1024× 1024 pixels, full-color (RGB), covering different re-
gions and seasons to show different types of surface changes, such as urban expansion and
building demolition. In this paper, these images are cropped to 256 × 256 nonoverlapping
small blocks and randomly divided into three parts to obtain 7120/1024/2048 samples in
the training, validation, and test sets.

The Wuhan University Change Detection (WHU-CD) dataset is a general remote sens-
ing image change detection dataset. The WHU-CD dataset is provided by the China Geo-
graphic Information Science Research Center of Wuhan University. This dataset comprises
a pair of high-resolution remote sensing images, featuring a spatial resolution of 0.075 m
and a size of 32,507 × 15,354. This image pair represents two remote sensing images at
different time points. These images cover a variety of terrains, such as urban buildings,
farmlands, mountains, and rivers, and demonstrated various surface change phenomena,
such as land use change and urban sprawl. These images are cropped to 256 × 256. For
the nonoverlapping small blocks, 6096/762/762 samples were obtained for the training,
validation, and test sets.

3.2. Experimental Settings

The experiments in this paper were performed on a Windows 10 (64-bit) operating
system with an 11th generation Intel(R) Core(TM) i9-9900K @ 3.60 GHz processor, an
NVIDIA GeForce RTX 2060Ti (16 GB) graphics processing unit (GPU), and the Python 3.8
environment. Conventional data augmentation, including random rescaling (0.8–1.2) and
Gaussian blurring, are applied to the data (image patch). A 5 × 5 Gaussian kernel is used
for Gaussian blurring, which is set to a standard deviation of 1.5 to balance image blurring
and detail preservation. The optimization of the model employed stochastic gradient
descent with momentum. A momentum value of 0.99 and weight decay of 0.0005 were
set. The initial learning rate was established at 0.01 and progressively decreased in a linear
fashion until reaching 0. The total number of iterations was 200, and a batch size of 16 was
used to train the model.

3.3. Evaluation Indicators

The choice of performance evaluation metrics in this study is pivotal for gauging
the proficiency of the proposed model in terms of detecting building changes in remote
sensing images. These metrics offer numerical assessments of the model’s capacity to
precisely recognize and categorize changes in an urban environment. The significance of
these performance evaluation metrics is elucidated as follows:

(1) Precision: Precision assesses the accuracy of the model in identifying changed areas
in the context of detecting building changes. It measures the proportion of true-positive
predictions among all positive predictions made by the model. A high precision value
indicates that the model has a low false-alarm rate, which is crucial for applications where
the precise identification of building changes is essential.

(2) Recall: Recall measures the proportion of true-positive predictions relative to all
actual positive instances in the input dataset. In the context of building change detection,
recall signifies the ability of the model to identify all changed areas while minimizing
false-negative instances. A higher recall value suggests that the model effectively captures
the majority of the actual changes in the urban environment.

(3) F1 score: The F1 score represents the harmonic mean of precision and recall, offering
a balanced assessment of the overall performance achieved by the model. It considers both
false positives and false negatives, making it a valuable metric for comprehensively gauging
performance. A high F1 score implies that the model achieves both precise identification
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and comprehensive coverage of changed areas, striking a balance between change detection
accuracy and inclusiveness in terms of recognizing changes.

(4) Intersection over union (IoU): The IoU assesses the overlap between the predicted
change areas and the actual ground-truth change areas. The calculation process involves
dividing the intersection of the predicted and ground-truth areas by their union. The IoU
offers insights into the spatial alignment and accuracy of the predictions produced by a
model concerning the real changes occurring in an urban environment.

(5) Overall accuracy (OA): The OA evaluates the overall correctness of the predictions
output by the model across all categories, offering a comprehensive assessment of the
model performance. It serves as a fundamental metric for assessing the ability of the model
to accurately classify areas both with changes and without changes. In this paper, the
variation category F1 was used as the main evaluation indicator. The F1 is calculated based
on the test accuracy precision and recall, and the calculation formula is as follows:

F1 =
2

reacll−1 + precision−1 (14)

The definitions of the precision, recall rate, intersection over union (IoU), and overall
accuracy (OA) are given as follows:

precision = TP/(TP + FP) (15)

recall = TP/(TP + FN) (16)

IoU = TP/(TP + FN + FP) (17)

OA = (TP + TN)/(TP + TN + FN + FP) (18)

In this scenario, TP signifies the count of correctly identified positive samples, FP
denotes the tally of erroneously reported negative samples, TN represents the number
of accurately identified negative samples, and FN indicates the quantity of undetected
positive samples.

3.4. Model Comparison Experiment

In this section, the performance of the proposed model in detecting building changes
in remote sensing images is assessed through a comparison with several state-of-the-
art methods.

FC-Siam-Di [26] (2018): A feature-level fusion method that employs a Siamese FCN to
extract multilevel features and integrates dual-temporal information through the use of
feature differences.

FC-Siam-Conc [26] (2018): A feature-level fusion method that utilizes Siam-FCN to
extract multilevel features and employs feature stitching for integrating dual-temporal
information.

FC-EF [26] (2018): An image-level fusion method that involves feeding a dual-temporal
image as a single input into a fully convolutional neural network.

DTCDSCN [7] (2020): A multiscale feature stitching method that enhances the deep
Siamese FCN by incorporating channel attention and spatial attention, aiming to obtain
more discriminative features.

BIT [27] (2021): A transformer-based method that uses the transformer’s global model-
ing capability to perform feature differentiation through semantic tokens. Enhancing the
contextual information in a convolutional neural network leads to a better change map.

ISNet [28] (2022): By combining margin maximization and targeted attention mecha-
nisms, ISNet successfully enhanced separability in remote sensing image change detection,
leading to superior performance.

Fusion-Former [29] (2023): A network that combines Transformer and CNN, Fusion-
Former can fully leverage their respective advantages to achieve multi-scale informa-
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tion integration and feature extraction, thereby enhancing the accuracy and efficiency of
change detection.

Visual comparisons of these methods on the two datasets are depicted in Figures 5 and 6.
The model proposed in this paper outperforms the other models in terms of the visualiza-
tion results. The proposed model can better avoid false-positives (shown by the green box
in the figure), and this type of erroneous detection can be reduced by enhanced feature
discrimination based on global context modeling. The building boundary information is
critical for building change detection. Better multiscale difference features lead to better
performance in processing some boundary information of buildings (indicated by the red
box in the figure).

Figure 5. Comparison and visualization results of LEVIR-CD using different change detec-
tion methods.

Figure 6. Comparison and visualization results of WHU-CD using different change detec-
tion methods.

The overall comparison results of the LEVIR-CD and WHU-CD test sets are shown in
Table 1. The quantitative results show that the model proposed in this paper outperforms
other methods on these two datasets. For example, on the LEVIR-CD dataset, the proposed
model achieves F1 scores higher than those of other comparative models except for being
on par with ISNet. On the WHU-CD dataset, the overall performance of the proposed
model is also superior to that of other comparative models. By measuring the multiscale
difference feature information and fusing low-level features with high spatial accuracy
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and high-level semantic features to complete the pixel-level prediction task, the proposed
model achieves superior performance. The context is modeled in the highly abstract global
space–time scope, and the context is used to enhance the feature representation in the
pixel space.

Table 1. Quantitative results of LEVIR-CD and WHU-CD by different change detection methods.
* Presents the results reported in the original article.

Method
LEVIR-CD WHU-CD

Pre. Rec. F1 IoU OA Pre. Rec. F1 IoU OA

FC-Siam-Di 89.42 83.16 86.18 75.51 98.65 47.56 77.61 58.99 41.70 95.65
FC-Siam-Conc 91.89 76.78 83.66 71.93 98.41 60.91 73.57 66.64 49.93 97.03

FC-EF 86.88 80.16 83.38 71.51 98.36 71.60 67.19 69.32 53.06 97.56
DTCDSCN 88.52 86.80 87.65 78.04 98.75 63.93 82.30 71.96 56.18 97.43

BIT 89.23 89.35 89.29 80.65 98.90 86.62 81.47 83.98 72.38 98.75
ISNet 91.37 87.86 89.58 80.68 98.89 84.83 81.71 83.24 72.47 98.38

Fusion-Former * 90.30 88.78 89.53 81.05 - 86.40 86.72 86.00 72.86 -
Ours 89.99 89.18 89.58 80.69 98.98 86.71 81.92 84.51 72.87 98.86

In comparison with state-of-the-art models, the proposed model demonstrates signifi-
cant advantages in overall performance. Here is a comparative analysis of them.

For BIT using a CNN backbone network (ResNet), high-level semantic features are
extracted from pairs of input images. Each temporal feature map is then transformed
into a compact set of semantic tokens using spatial attention. Subsequently, a transformer
encoder is employed to model the context within the two token sets. The context-rich
tokens generated are then reprojected into pixel space by a Siamese-transformer decoder to
enhance the original pixel-level features. Finally, feature difference images are computed
from the two refined feature maps and input into a shallow CNN to produce pixel-level
change predictions. Although it does not incorporate specific modules designed for change
detection, its strong performance is attributed to its superior global modeling capabilities
and effective enhancement of original features. However, BIT does not acquire multi-scale
features like the proposed model, which may have some impact on handling boundary
information, potentially leading to slight blurring at boundaries and a small number of
false positives. Therefore, its performance is slightly inferior to the proposed model.

ISNet introduces a margin maximization module to learn and clarify the difference
between changing and invariant semantics, alleviating the issue of blurred boundaries
between hierarchical features during feature extraction. The Targeted Arrangement of
Attention Mechanisms is a plug-and-play attention module. In the feature extraction stage,
the Channel Attention module is inserted into each stage to emphasize specific channels
in the feature maps by learning different weights for each channel, promoting semantic-
specific feature extraction. In the multi-scale feature-fusion stage, the Spatial Attention
highlights the positional change response in the fused bi-temporal features. ISNet adopts a
top-down fusion path to merge multi-scale features, similar to the hierarchical transformer
processing concept proposed in this model. By obtaining features at different scales through
multiple backbone blocks and then fusing these features, it can better handle building
boundary information. ISNet slightly lags behind the proposed model in global modeling
capability. Models that capture long-distance dependencies and global features can better
capture subtle changes and overall characteristics in images, thereby improving the F1
score. Therefore, the F1 score of the proposed model is better than ISNet.

Fusion-Former combines the characteristics of Transformer and Convolutional Neural
Networks (CNN) for building change detection. By introducing the Fusion-Block, it im-
plements the self-attention mechanism of the transformer and the bidirectional interaction
of CNN depth convolution, enhancing the modeling capability in channel and spatial
dimensions. This enables the integration of multi-scale information and feature extraction.
On the WHU-CD dataset, the recall and F1 scores of Fusion-Former are slightly higher than



Sensors 2024, 24, 1268 13 of 18

those of the proposed model, which may be attributed to the Vision-Module. This module
can more effectively encode fine-grained information, enhancing the recognition ability of
change regions and thus improving the model’s detection capability for change regions.
However, Fusion-Former has some shortcomings [29] in edge feature extraction, and the
fusion of Transformer and CNN also makes the model structure more complex. In contrast,
the proposed model combines the difference module that captures the difference features
before and after building changes with the Siamese transformer-based structure, which
can better extract multi-scale features of buildings in bitemporal remote sensing images,
facilitating the handling of building boundary information. This paper only utilizes the
transformer structure, making the overall model structure more concise and unified.

In summary, compared to other state-of-the-art models, the proposed model demon-
strates significant advantages in overall performance. In the comparative analysis, Fusion-
Former achieves slightly higher recall and F1 scores in some aspects but suffers from
shortcomings in edge feature extraction and the complexity of the model structure. In
contrast, ISNet and BIT lag behind in global modeling capability and multi-scale feature
extraction compared to the proposed model. Overall, the proposed model exhibits superior
performance in handling building change detection tasks, attributed to its concise and
unified model structure, as well as its effective handling of boundary information, making
it more reliable.

These qualitative and quantitative comparisons demonstrate that the proposed change
detection method outperforms the state-of-the-art detection methods in the following
Table 1. These better results are mainly obtained because by utilizing the Siamese architec-
ture, transformer encoder, difference module, and decoder together, the model proposed in
this paper is able to better capture multiscale disparity features, merge low-level features
with high-level semantic features, and complete the task of change detection at the pixel
level, thus achieving superior performance.

3.5. Ablation Experiment

To further elucidate the effectiveness of the model proposed in this paper, ablation
experiments were performed on the LEVIR-CD and WHU-CD datasets. Three ablation
experiments were designed:

(1) The Siamese architecture is used to layer the transformer encoder. This model is
designed to investigate the contribution of the Siamese architecture to the performance
of the proposed model. The Siamese architecture is used to extract features reflecting
differences at multiple levels in dual-temporal remote sensing images. By using the Siamese
architecture to layer the transformer encoder, the model can capture long-distance spatial
dependencies and better process building boundary information.

(2) The Siamese architecture is used to layer the transformer encoder and the difference
module. This model is designed to investigate the contribution of the difference module
to the performance of the proposed model. The difference module is used to obtain
multiscale difference feature representations, and richer context information is captured at
different feature levels through feature fusion. By using the Siamese architecture to layer
the transformer encoder and the difference module, the model can better characterize the
change characteristics and reduce the false-positive rate.

(3) The Siamese architecture, transformer encoder, and difference module are used in
cooperation with the decoder: This model is designed to investigate the contribution of
the decoder to the performance of the proposed model. The decoder is used to upsample
the feature maps and generate the final change detection map. By using the Siamese
architecture, transformer encoder, and difference module in cooperation with the decoder,
the model can better process building boundary information and improve its change
detection performance.

In these figures, the model iterations are depicted on the horizontal axis, while the
precision, recall, and F1 values of the model are represented on the vertical axis for the
three ablation experimental models and the proposed model. Figures 7 and 8 show that in
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the ablation experiments, the approach introduced in this paper exhibits superior accuracy
during training and achieves a more effective final convergence based on the Siamese
architecture and the differential module model.

Figure 7. Ablation experiments on the LEVIR-CD dataset.

Figure 8. Ablation experiments on the WHU-CD dataset.

In the ablation experiments, three different experimental models are designed to in-
vestigate the contributions of specific modules to the overall performance of the proposed
model. The quantitative metrics used to evaluate the performance of each model include
precision, recall, and the F1 score. The results of the ablation experiments are presented in
Tables 2 and 3, which show that the proposed model outperforms the other models on both
the LEVIR-CD and WHU-CD datasets in terms of precision, recall, and the F1 score. Specifi-
cally, the F1 scores of the proposed model are 8.7%, 4.9%, and 2.1% greater than those of the
other models on the LEVIR-CD dataset and 12.1%, 2.9%, and 1.2% greater on the WHU-CD
dataset. The main reason for this finding is that the hierarchical feature maps generated
by the Siamese architecture together with the difference module can better characterize
the observed change characteristics, thus reducing false positives. Moreover, multilevel
and multiscale difference features can better process building boundary information, thus
enhancing the model performance.

To enhance the visualization and analysis of the experimental outcomes, feature visual-
izations using the proposed method and the baseline are presented in Figures 9 and 10. The
visualizations in these figures were assessed using the same model as those used in the cor-
responding rows in Figures 5 and 6. In these visual representations, the highlighted regions
signify the pivotal regions of feature emphasis. The model places increased emphasis on
the identified change region and demonstrates superior handling of boundary information
details. As shown in Figure 9c,d in Figure 10 and Figure 10c,d compared with the feature
focus of the baseline, the present network model pays more attention to the foreground and
global information, thus obtaining finer content details and building boundary information.
In addition, these features’ attention highlights the locations of foreground change regions
in complex scenes, thus improving the change detection performance.



Sensors 2024, 24, 1268 15 of 18

Table 2. Quantitative results of the effect of different modules on the LEVIR-CD dataset.

Method Pre. Rec. F1 IoU OA

Our 89.9 89.1 89.5 80.6 98.9
Base 78.8 82.8 80.8 71.6 96.4

Base+Siamese-Transformer 84.6 84.6 84.6 75.2 98.1
Base+Siamese-Transformer+ DiffModule 87.6 87.3 87.4 79.3 98.6

Table 3. Quantitative results of the influence of different modules on the WHU-CD dataset.

Method Pre. Rec. F1 IoU OA

Our 86.7 81.9 84.5 72.8 98.8
Base 73.1 71.8 72.4 60.3 94.5

Base+Siamese-Transformer 83.3 79.9 81.6 68.6 97.5
Base+Siamese-Transformer+ DiffModule 85.6 81.3 83.3 71.5 97.9

The attention maps shown in Figures 9 and 10 are computed using the proposed
model. These attention maps highlight the regions of the input image that the model
considers most important for making its decision. Specifically, the attention maps are
generated by computing the attention weights of each feature map in the encoder of the
model. The attention weights are subsequently used to weight the feature maps, resulting
in a weighted sum that represents the most important regions of the input image. The
significance of these attention maps lies in their ability to provide insights into the decision-
making process of the model. By visualizing the regions of the input image that the model
considers most important, we can gain a better understanding of the features and patterns
that the model is using to make its decision. This approach can be particularly useful for
identifying areas where the model may make errors or for identifying areas where the
model is particularly effective.

Figure 9. LEVIR-CD attention maps: (a) original image; (b) label; (c) baseline model; and (d) pro-
posed model.
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Figure 10. WHU-CD attention maps: (a) original image; (b) label; (c) baseline model; and (d) pro-
posed model.

4. Conclusions

This paper puts forward a Siamese transformer network that incorporates a difference
module, aiming to detect changes in buildings within remote sensing images. The proposed
Siamese layered transformer architecture is employed to extract features reflecting differ-
ences at multiple levels in dual-temporal remote sensing images. The difference module
was used to obtain multiscale difference feature representations, and richer context infor-
mation was captured at different feature levels through feature fusion. Finally, the change
detection result was obtained. In this mechanism, the feature representations at different
scale levels were obtained through Siamese multilayer transformers, which capture the
long-distance spatial dependence and better process the building boundary information. In
addition, the difference module compares the difference maps of the dual-temporal images
to learn a better representation, effectively reducing the false-positive information in the
dual-temporal remote sensing images.

On the LEVIR-CD dataset, the proposed method achieves an F1 score of 89.58%, sur-
passing the F1 scores of other state-of-the-art methods, including FC-EF (83.38%), FC-Siam-
DI (86.18%), FC-SiamConc (83.66%), DTCDSCN (87.65%), BIT (89.29%), ISNet (89.58%), and
Fusion-Former (89.53%). Similarly, on the WHU-CD dataset, the proposed method attains
an F1 score of 84.51%, surpassing the vast majority of comparative methods, such as FC-EF
(69.32%), FC-Siam-DI (58.99%), FC-SiamConc (66.64%), DTCDSCN (71.96%), BIT (83.98%),
and ISNet (83.24%), but is slightly inferior to Fusion-Former (86.00%). Additionally, the
proposed method demonstrates superior performance in terms of the precision, recall, IoU,
and overall accuracy metrics on both utilized datasets when compared to other methods.
The comparative analysis highlights the effectiveness of the proposed method, particularly
in terms of handling complex urban environments and subtle changes in remote sens-
ing imagery. In these scenarios, the proposed method exhibits outstanding performance
compared to that of the existing methods.
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While the proposed model demonstrates excellent performance, a potential limitation
for future research to address lies in its ability to handle complex or dynamic environmental
conditions, such as variations in lighting, weather, or seasons. Subsequent studies can focus
on enhancing the robustness of the model to these environmental factors. We plan to collect
and curate a dataset for detecting building changes from unmanned aerial vehicle (UAV)
remote sensing images. This dataset will be used to adjust the model training process, and
its applicability will be extended to scenarios such as environmental monitoring and urban
planning. This extension will aim to further assess the generality and adaptability of the
developed network.
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