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Abstract: In the contemporary landscape, with the proliferation of cyber-physical systems and the
Internet of Things, intelligent embedded systems have become ubiquitous. These systems derive
their intelligence from machine learning algorithms that are integrated within them. Among many
machine learning algorithms, decision trees are often favored for implementation in such systems due
to their simplicity and commendable classification performance. In this regard, we have proposed
the efficient implementations of a fixed-point decision tree tailored for embedded systems. The
proposed approach begins by identifying an input vector that might be classified differently by
a fixed-point decision tree than by a floating-point decision tree. Upon identification, an error
flag is activated, signaling a potential misclassification. This flag serves to bypass or disable the
subsequent classification procedures for the identified input vector, thereby conserving energy and
reducing classification latency. Subsequently, the input vector is alternatively classified based on
class probabilities gathered during the training phase. In comparison with traditional fixed-point
implementations, our proposed approach is proven to be 23.9% faster in terms of classification
speed, consuming 11.5% less energy without compromising classification accuracy. The proposed
implementation, if adopted in a smart embedded device, can provide a more responsive service to its
users as well as longer battery life.

Keywords: decision tree; fixed-point arithmetic; hardware implementation

1. Introduction

In the era of artificial intelligence, the significance of machine learning algorithms
remains paramount, playing a crucial role in a myriad of applications across various
domains [1–4]. A decision tree (DT) is an effective classification algorithm proposed by
Breiman et al. [5]. It has been utilized in diverse applications such as handoffs in Internet of
Vehicles [6], screen content coding [7], human activity classification [8], wafer map failure
pattern recognition [9], forecasting consumer decision [10], and selecting pet adopters [11].
A DT can be implemented either in software or in hardware, and hardware implementation
has recently drawn considerable attention [12,13]. There are two primary reasons for
this shift. Firstly, the current technological trend strongly advocates for the hardware
implementation of machine learning algorithms. With the maturation of technologies
such as cyber-physical systems and the Internet of Things, data-driven classifications or
recognition using machine learning algorithms have become ubiquitous. As the volume of
available data and the number of users continue to grow exponentially, running machine
learning algorithms in a centralized manner is no longer a scalable option. Consequently,
a distributed computing framework like edge computing, which situates computation
and data storage closer to the data sources, has been developed to enhance response time
and conserve network bandwidth. This trend underscores the increasing likelihood of
implementing machine learning algorithms in computer systems, where energy efficiency
is a paramount design consideration. Therefore, the hardware implementation of machine
learning algorithms is deemed a viable and relevant option. Secondly, among the multitude
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of machine learning algorithms, the DT algorithm stands out as a leading candidate for
hardware implementation. This is attributed to the relative simplicity of the DT algorithm
coupled with its ability to deliver acceptable performance [14]. Its simplicity can be
translated to low energy consumption and fast response time. Examples of DT hardware
implementation in real-time embedded systems include cow behavior classification [13],
biomedical monitoring systems [15], network traffic classifiers [16], gesture recognition
systems [17], and gas identification [18].

Between two types of DTs, axis-parallel DTs, whose hyperplanes are parallel to the
axis in attribute space, have been more popular than oblique DTs, whose hyperplanes are
oblique to the axis. However, if data can be more readily partitioned by non-axis-parallel
hyperplanes, oblique DTs are often simpler but more accurate [19]. This difference may be
more apparently manifested as data size and complexity grow in the big data era. Therefore,
oblique DTs have gained interest and have been studied extensively. Some of the research
works include the tree induction algorithm [19] and oblique DT ensemble [20].

Some DT hardware implementations for embedded systems adopt fixed-point arith-
metic to reduce hardware requirements and energy consumption [21,22]. Compared with
floating-point arithmetic, however, fixed-point arithmetic may suffer from lower classifica-
tion accuracy due to its limited capability of representing real numbers. Hence, the selection
of the number of bits to represent real values in fixed-point arithmetic hardware becomes a
critical consideration. It must be carefully chosen to strike a balance between maintaining
classification accuracy and maximizing resource efficiency. This trade-off may entail a
certain degree of accuracy decline, particularly in systems where energy consumption is
the most crucial design consideration. In such instances, identifying which classification
outputs are likely to differ from those produced by floating-point arithmetic allows for the
possibility of disregarding those identified outputs, potentially enhancing the precision of
classifications. In such a case, if it becomes feasible to determine whether an input vector
is prone to being classified differently by a fixed-point DT than by a floating-point DT,
the processing of the input vector can be halted for improved classification speed and
energy efficiency. Alternatively, the corresponding classification can be ignored, leading to
higher precision.

In this context, we propose fixed-point oblique DT implementations for embedded
systems, aiming at improving classification speed and energy efficiency without degrading
classification accuracy. The proposed implementations encompass three key mechanisms.
Firstly, a potential error detection mechanism identifies an input vector for which fixed-
point arithmetic and floating-point arithmetic may yield different classification outputs.
Subsequently, a potential error flag is set for the input vector, and this error flag is in-
cluded in the final outputs along with the predicted class identification number, indicating
that the confidence level of the classification is low. The second mechanism, termed the
skipping/disabling mechanism, examines the error flag to determine whether to continue
processing the corresponding input vector or not. If the input vector is flagged as poten-
tially erroneous, the mechanism makes the rest of the classification procedures of the input
vector skipped or disabled, enhancing energy efficiency and reducing classification latency.
The third mechanism predicts the class of a skipped or disabled input vector. This step
is essential for the skipped or disabled input vectors as their classification outputs were
interrupted before being produced.

The novelty of the proposed implementation can be encapsulated in two key points.
Firstly, it pioneers the utilization of errors caused by the limitation of fixed-point representa-
tion, opening up an opportunity for faster and energy-efficient DT classification. Secondly,
the implementation features an algorithm that generates an alternative classification result
prior to reaching a leaf node.

The rest of the paper is organized as follows: Section 2 presents the literature review,
and Section 3 introduces the baseline DT architectures. Section 4 describes the proposed
DT architectures, and Section 5 is devoted to experimental results; the paper is concluded
in Section 6.
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2. Related Works

There have been quite a few hardware implementations of DTs aiming to achieve
higher performance and energy efficiency than software implementations. A highly scalable
and parallelized axis-parallel DT implementation was proposed in [23]. This pipelined
implementation achieves high levels of parallelism by increasing the number of parallel
pipelines, and it can accommodate trees with depths of up to 13 by increasing the number
of pipeline stages. Another scalable approach targeting large DTs was proposed in [24].
The authors pinpointed the high memory requirement of a large DT as the most critical
hindrance to scalability. To solve this problem, they first partitioned tree data and stored it
in dual-port distributed RAM in each individual processing element, which constituted a
two-dimensional pipelined architecture.

An implementation for oblique DTs was also proposed [25]. Because an oblique DT is a
generalized version of an axis-parallel DT, this implementation can cover both axis-parallel
and oblique DTs. They presented two architectures: Single Module per Level architecture
and universal node architecture. In the Single Module per Level architecture, each module
is connected in a pipeline fashion, processing multiple inputs simultaneously. The universal
node architecture is suitable for DT ensembles due to its architectural simplicity.

A recent paper introduced a template-based architecture for shallow machine learning
algorithms, such as support vector machines, logistic regressions, k-nearest neighbors, and
DTs [26]. They targeted shallow machine learning algorithms because they can complement
deep learning algorithms with acceptable accuracy, especially in edge computing. They
proposed a methodology that automatically builds accelerator hardware for a machine
learning algorithm using templates that match the algorithm’s computational structure.

Implementations for DT ensembles have also been one of the hot topics in machine
learning hardware research because they are very effective in the regime of limited train-
ing data, little training time, and little experience for parameter tuning. Also, in some
applications such as pixel classification of hyperspectral images, DT ensembles produce
an accuracy close to that obtained with convolutional neural networks while executing
one order of magnitude less computation [14]. The main difference between DT imple-
mentations and DT ensemble implementations is the existence of a combiner module that
combines the outputs of individual ensemble members to generate a collective decision.
Implementations of axis-parallel DT ensembles were proposed in [27,28], and those of
oblique DT ensembles can be found in [29]. These implementations targeted real-time
embedded systems with stringent power constraints.

An example of another line of research is an implementation of a state-of-the-art tree
traversal algorithm [30]. They present a system-on-chip (SoC)-based field-programmable
gate arrays (FPGAs) implementation of the QuickScorer algorithm [31], which is an efficient
tree traversal algorithm designed for large binary tree ensembles. This solution is suitable
for difficult inference tasks such as ranking documents, web search engines, and online
social networks.

Broadly speaking, there have been two predominant research directions in DT hard-
ware implementation. The first direction is a hardware-centric approach, which involves
techniques such as parallelization [23] and memory system optimization [24]. The focus
of this approach is on enhancing the hardware design of existing algorithms to boost per-
formance and energy efficiency. The second direction, on the other hand, adopts efficient,
hardware-friendly algorithms for actual implementation [31]. What we propose in this
paper diverges from these two directions through its leveraging of the algorithmic features
inherent in DTs. The first algorithmic feature we utilize is the computation at each node
of an oblique DT: the sum of products between the input vector and node coefficients.
This computational feature, combined with fixed-point arithmetic, contributes to potential
error detection, as detailed in Section 4.1. The second algorithmic feature we pay atten-
tion to is the tree-based nature of DT algorithms. As tree traversal progresses down a
tree for an input vector, it becomes increasingly probable to predict the class of the input
vector correctly, even before reaching a leaf node. This is because the number of candidate
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leaf nodes at which the tree traversal will conclude is reduced. This feature is harnessed
to predict the classes of input vectors detected as potentially erroneous, as explained in
Section 4.3. Because these features are common in oblique DTs, our proposed approach can
seamlessly integrate with other hardware-centric implementation techniques developed
for oblique DTs.

3. Baseline DT Architectures

At each node of an oblique DT, the following equation is evaluated to choose the next
node to visit.

f (A) =
n

∑
i=1

ai Ai + an+1 ≶ 0 (1)

where Ai denotes the ith attribute of input vector A (length of n), ai denotes the ith coefficient
of a node except with an+1 being the bias term, and 0 is the threshold. If f (A) is greater
than or equal to the threshold, the left child node is selected as the next node to visit.
Otherwise, the right child node is selected. The proposed DT architectures implement
Equation (1) and are based on two existing DT architectures: pipeline architecture and
recurrent architecture [25]. As shown in Figure 1, the pipeline architecture is composed of
multiple pipeline stages, each of which is associated with a DT level. On the other hand,
the recurrent architecture depicted in Figure 2 has one universal stage, and an input vector
stays in the stage until it is classified.

A stage in the pipeline architecture comprises four modules: a control module (CTL),
a node memory, an input memory, and a computation module (COMP). A control module
broadcasts a state number generated from a state machine in the module to all other
modules in the same stage in order to orchestrate each module’s execution. A control
module is also responsible for generating a disable signal. In addition, a control module
selects a node number and a class number for the next stage and delivers them to the
next stage. A node memory module consists of three memory sub-modules: a coefficient
memory, a node number memory, and a class number memory. The coefficient memory
stores coefficients for all nodes at the same level, while the node number memory and
class number memory store child node numbers and their corresponding class numbers,
respectively. For a leaf child node, the stored class number is valid, whereas for a non-
leaf child node, it is an invalid class number that is preset to be larger than any valid
class number. When receiving a node number from the previous stage, these memory
sub-modules provide the control module with node coefficients, a class number, and two
child node numbers based on the received node number. An input memory in the pipeline
architecture holds a single input vector, which is then relayed to the next stage after being
processed in the current stage. The computation module performs calculations using
Equation (1), utilizing the input vector and a coefficient vector from the input memory
and the coefficient memory within the same stage. It is important to note that solid lines
and dashed lines are used to indicate data flows and control signal flows, respectively.
The control signal conveys the current state number generated by the state machine in the
control module. This comprehensive architecture facilitates the efficient processing and
coordination of information throughout the pipeline.
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Figure 1. Baseline decision tree (DT) architecture 1: pipelined DT with three pipeline stages.

Figure 2. Baseline DT architecture 2: recurrent DT (A: class number, B: disable signal, C: node number,
D: child node number and their class number, E: node coefficients, F: input vector).

Let us explain how the pipeline architecture works using Figure 1. The control module
in pipeline stage 2 receives a class number (A1) and the disable signal (B1) from stage 1. If
a leaf node is reached for an input vector in stage 1, the disable signal (B1) is true and the
class number (A1) is a valid one. In this case, the class number is relayed to stage 3 and is
outputted as the final output for the input vector. The purpose of the disable signal is to
prevent the remaining pipeline stages (stage 2 and 3) from unnecessarily processing the
input vector. In order to achieve this, the control module generates different state numbers
if the disable signal is true. The node memory in stage 2 receives a node number (C1) from
stage 1, which corresponds to the node that will be processed in stage 2. Upon receiving
the node number, the node memory provides data that correspond to the node number:
the child node numbers and their class numbers (D2) in the control module and the node
coefficients (E2) in the computation module. The input memory in stage 2 receives an input
vector (F1) from stage 1, which has been processed in stage 1. The input memory then
sends the input vector to the computation module (G2) as well as to the input memory
in stage 3 (F2). The result computed by the computation module (I2) is delivered to the
control module, and the control module selects a child node based on the result from the
computation module and sends it to stage 3 (C2). If a leaf node is reached in stage 2, the
disable signal (B2) becomes true, and the corresponding class number (A2) is passed to
stage 3, which is chosen between the class numbers from the node memory (D2).

The recurrent architecture comprises a singular stage, mirroring the structure of a stage
in the pipeline architecture as in Figure 2. Within the recurrent architecture, nodes that
traverse during the classification of an input vector are sequentially processed within this
single stage. Unlike the pipeline architecture, where each stage’s input memory module
stores only one vector, the input memory module in the recurrent architecture stores
multiple input vectors. A memory counter within the input memory module is employed
to select an input vector for output, incrementing by one each time an input vector is
classified. In contrast to the node memory in the pipeline architecture, which stores data
for a specific tree level, the node memory in the recurrent architecture encompasses data
for all tree levels. The computation module in the recurrent architecture mirrors the one
employed in the pipeline architecture. Notably, in the recurrent architecture, the control
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module transmits the next node number to the node memory within the same stage instead
of forwarding it to the node memory in the subsequent stage. Additionally, the control
module generates a skip signal instead of a disable signal. This skip signal instructs the
input memory to output the next input vector, streamlining the recurrent architecture’s
processing of input vectors. The sequential nature of node processing and the ability to
store and retrieve data across all tree levels contribute to the distinctive characteristics of
the recurrent architecture.

As shown in Figure 2, the recurrent architecture begins to work by sending the initial
node number (A) to the node memory and setting the skip signal (B) to true, which is
connected to the input memory. Then, the node memory sends corresponding child node
numbers and class numbers (C) to the control module and corresponding node coefficients
(D) to the computation module. At the same time, the input memory sends the first input
vector (E) to the computation module. The computation module uses node coefficients
(D) and an input vector (E) to produce the output of Equation (1) and sends the output (F)
to the control module. The control module then examines the output value (F) to decide
which child node to visit next. When the next node is selected, the control module uses
class numbers to determine whether a leaf node has been reached. If the class number of
the selected child node is invalid, it means the next node is not a leaf node. In this case, the
next node number is selected between the child node numbers from the node memory and
is sent to the node memory. If the next node turns out to be a leaf node—in other words, if
the class number of the selected child node is a valid class number—the control module
outputs the class number as the final classification output and sets the skip signal to true in
order to start processing the next input vector. More detailed information on the baseline
architectures can be found in [25].

4. Proposed DT Architectures

We propose two DT architectures: a pipeline architecture and a recurrent architecture.
To enhance execution time and energy efficiency, we introduce the following novel features
to the baseline DT architectures. Firstly, our proposed architectures can detect potential
misclassifications resulting from the limitations of fixed-point representation. This detection
mechanism serves to identify input vectors that may be prone to misclassification due to
the finite precision of fixed-point representation. Secondly, by leveraging this detection, we
optimize execution time and energy consumption by halting tree traversal for the identified
input vectors. The rationale behind this mechanism is rooted in the understanding that
continuing the processing of a detected input vector that is likely to be misclassified is
meaningless. If an input vector is destined for misclassification, its class may even be randomly
generated. Instead of making a random classification, our approach predicts the class number
for the detected input vector. During the DT training phase, we learn the most frequently
observed class of training vectors at each node, and this learned class is then utilized as the
classification for input vectors identified as potentially misclassified at that particular node. In
the subsequent subsections, we will elaborate on these three distinctive features.

4.1. Potential Error Detection

Approximating a real number using a fixed-point binary number involves rounding.
When rounding up is employed to approximate the multiplication outputs during the
evaluation of Equation (1), the final result of the equation tends to be greater than or equal
to its true value. Conversely, if rounding down is used, the result of the equation is less
than or equal to its true value. This approximation error, stemming from rounding, can
sometimes lead to different child node selections compared with scenarios where floating-
point multiplications are utilized. Furthermore, the occurrence of one or more distinct
child node selections during the processing of an input vector may result in a switch in
classification result. In essence, the approximation errors introduced by rounding can
influence the decision-making process in the tree traversal, potentially leading to variations
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in the selected child nodes and subsequently affecting the final classification outcome for
the input vector.

Table 1 shows the diversion ratio and class switch ratio of each dataset selected from
the UCI machine learning database repository [32]. Note that the fixed-point bit length
used to generate Table 1 is 16: 11 bits for the integer part and 5 bits for the fractional part.
The diversion ratio column contains ratios between the number of input vectors for which
one or more diversions occur and the total number of input vectors. It should be noted
that a diversion here means a different child node selection. A class switch ratio indicates
what the percentage of the number of input vectors with classification switches is with
respect to the number of input vectors for which one or more diversions occur. On average,
7.3% of input vectors undergo diversions, and 70.6% of them suffer from classification
switches. For Car, Iris, and Scale, the impact of the class switch seems negligible, but it is
not ignorable for Ecoli, Diabetes, Glass, and Liver.

Given the challenge of precisely identifying cases where rounding-induced errors
occur, the typical solution has been to increase the fixed-point bit length to uphold classifi-
cation accuracy. Unfortunately, this strategy comes at the cost of forfeiting opportunities for
achieving higher energy efficiency and faster classification speeds. However, we contend
that there is an alternative approach. If we have access to the outputs of Equation (1),
computed using each of the two rounding schemes for a given input vector, we can discern
whether the corresponding child node selection is potentially erroneous. This insight not
only allows for a more nuanced understanding of potential misclassifications but also
opens the door to opportunities for enhancing both energy efficiency and classification
speed. By leveraging this information, it becomes possible to make informed decisions
about when to intervene in the processing of an input vector.

Table 1. Diversion ratio and class switch ratio of selected datasets from [32] when using a 16-bit
fixed-point representation.

Dataset Diversion Ratio Class Switch Ratio

Car 0.009 0.525

Ecoli 0.109 0.791

Wine 0.034 0.917

Survival 0.081 0.512

Diabetes 0.142 0.618

Iris 0.018 0.833

Hayes 0.040 0.667

Scale 0.011 0.750

Ion 0.042 0.628

Glass 0.081 0.911

Haber 0.081 0.681

Liver 0.174 0.711

Raisin 0.113 0.549

Average 0.073 0.706

Figure 3 shows three outputs of Equation (1): an output with rounding down ( f down),
an output without rounding ( f orig), and an output with rounding up ( f up). If the threshold
(i.e., zero) is in range 1 or range 4, the next nodes determined by the three outputs are
identical, which means that fixed-point computation does not alter the next node to visit.
In contrast, if the threshold is in range 2 or range 3, one of the child nodes determined using
rounding is different from the child node determined without rounding, and the child
node determined using rounding down differs from that using rounding up. Hence, if the
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output of Equation (1) using rounding up and that using rounding down have different
signs, it indicates that there is a chance of rounding-induced diversion and classification
switch for the corresponding input vector, as presented in Table 1.

Figure 3. Output of Equation (1) with rounding down, rounding up, and no rounding.

However, in order to make use of this observation, Equation (1) should be evalu-
ated twice for a node using rounding up and rounding down separately. To cope with
this inefficiency, we propose a more efficient scheme based on another observation: the
difference between the rounded-up version of a value and the rounded-down version
is at most the smallest positive value (SPV) of the corresponding fixed-point format
(one at the least significant bit and zero at all other bits). Because each multiplication in
Equation (1) entails a rounding operation, the difference between f up and f down at each
node is at most n×SPV, where n is the number of multiplications in Equation (1). This
observation allows us to approximate f up by adding n×SPV to f down or f down by subtracting
n×SPV from f up. Because n×SPV is a constant for a given dataset, it can be stored in a regis-
ter instead of computing it. If this method detects an erroneous child node selection, which
potentially gives rise to a classification error, an error flag is set. This flag not only serves
as classification confidence but also gets utilized later for faster and more energy-efficient
classification.

As shown in Figure 4, implementing this mechanism requires three additional com-
ponents: an adder to approximate f up from f down, a register that stores n×SPV, and a
comparator that compares the most significant bits of f up and f down. The exclusive-OR
gate can be used as the comparator to produce the error flag, which becomes one when
the two most significant bits are different. This indicates a possible diversion in child
node selection.

Figure 4. Extra hardware for potential error detection.

4.2. Two Hardware Schemes Utilizing Error Detection

If fixed-point arithmetic and floating-point arithmetic produce different classification
outputs, at least one of them is inevitably incorrect. If the overall classification accuracy
with floating-point arithmetic is high, it is highly probable that the classification output
using fixed-point arithmetic is incorrect. Thus, there has to be a way to stop processing
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an input vector once the potential error flag is set for the vector. For this, we propose two
schemes: disabling and skipping schemes.

The proposed disabling and skipping schemes suit the pipeline and the recurrent
architectures, respectively. In the pipeline architecture, if the potential error flag is set for
an input vector, the disable signal is set and relayed to all remaining stages. The signal
disables the memory accesses to the two memory modules in all remaining stages and
makes the inputs to the arithmetic units unchanged, thereby abating switching activity.
In addition, the error flag is also outputted along with classification output to indicate a
confidence level of the classification output. As the baseline pipeline architecture already
includes a disabling mechanism, the proposed disabling scheme can be implemented by
simply modifying the control module to also set the disable signal for the error flag, as
shown in Figure 5.

Figure 5. Extra hardware for generating the disable signal.

In the recurrent architecture, the error flag sets the skip signal. For the DT shown in
Figure 6, if node 11 is the final leaf node, the DT hardware processes four nodes (node
1, 2, 4, and 8) sequentially. Meanwhile, if the potential error flag is set while processing
node 2, processing node 4 and 8 is skipped, and processing the next input vector can start
immediately, saving energy and reducing classification latency simultaneously. As the
control module in the recurrent architecture already includes a stopping mechanism, the
proposed stopping scheme can be easily incorporated by modifying the control module to
set the skip signal not only when a leaf node is reached but also when the error flag is set,
as shown in Figure 7.

Figure 6. A DT example: the number inside each inner circle is a node number, the numbers before
each left parenthesis indicate the class numbers of vectors visiting the corresponding node, the
number inside each parenthesis is the number of input vectors visiting the corresponding node, and
the darker circles are leaf nodes.
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Figure 7. Extra hardware for generating the skip signal.

4.3. Classifying Detected Input Vectors

Even if a potential error is detected and the subsequent processing of the corresponding
input vector is disabled or skipped, the class of the input vector still needs to be provided.
For this, a probability-based class prediction method is proposed. The motivation for this
method is based on the observation that it is possible to predict the class of an input vector
even before reaching a leaf node. This predictive capability stems from the nature of the
DT as a tree-based algorithm. As the traversal progresses down the tree, the potential
terminal nodes where the traversal might conclude are progressively narrowed down. This
narrowing of possibilities enhances the likelihood of correctly predicting the class before
reaching a leaf node. This characteristic distinguishes DT from other machine learning
algorithms like neural networks and support vector machines. By leveraging this unique
feature of DT, our probability-based class prediction method offers a way to anticipate the
likely class of an input vector, facilitating accurate classifications even for vectors that are
flagged as potentially misclassified and have their processing interrupted.

Let us illustrate how class predictability is improved as tree traversal progresses. In
Figure 6, at node 1, the probability that an input vector is classified as class 1 is 2.4%
(10/420), as there are 10 train vectors of class 1 out of the total 420 train vectors that visited
node 1. Similarly, the probability for an input vector to be classified as class 2, class 3, and
class 4 is 38.1% (160/420), 35.7% (150/420), and 23.8% (100/420), respectively. Conversely,
at node 4, the probability that an input vector is classified as class 1, class 2, and class 3 is
12.5% (10/80), 25.0% (20/80), and 62.5% (50/80), respectively. Therefore, if we predict the
class of an input vector at node 1, we would predict it to be class 2 with a 38.1% likelihood.
However, if we predict the class of an input vector at node 4, we would predict it to be
class 3 with a 62.5% likelihood. It is important to note that these computations are based on
the tree traversal history recorded using the training data.

This probability-based class prediction algorithm is as follows. First, we count the
number of train vectors visiting each non-leaf node and record their class numbers during
the training phase to compute the probabilities of each class at every non-leaf node. After
computing class probabilities at every non-leaf node, the class with the highest probability
(i.e., class 3 for node 4) is stored in its corresponding node memory, and this is used as the
classification output for the input vectors that make the error flag be set.

As shown in Figure 8, this mechanism can be integrated into the baseline DT architec-
tures by adding a register for a probabilistically determined class number, another register
for an invalid class number, and a multiplexer that chooses between the class number of the
corresponding leaf node and the probabilistically chosen class number. The select signal to
the multiplexer is set to one, and the probabilistically selected class is chosen only if the
selected class number is valid and the error flag is set. Note that the equality comparator
produces one if the preselected class is equal to the invalid class number, which is set to a
value larger than all valid class numbers.
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Figure 8. Extra hardware for probability-based class prediction.

5. Experiments

To evaluate the effectiveness of the proposed architectures, we employed public domain
datasets from [32]. As a preprocessing step, feature-wise normalization was conducted
to ensure that the data fell within the range of −1 to 1. Subsequently, each dataset was
divided into four groups, with two groups being allocated for training and the remaining
two for validation and testing, respectively. With six distinct combinations of two groups, six
unique training datasets were created, each of which were employed in a cross-validation
run (specifically, a six-fold cross-validation). In each cross-validation run, a tree model was
learned and tested, yielding six sets of experimental results, such as accuracies and ratios.
Consequently, most of the results presented in this paper represent averages derived from six
different values.

DT training was performed using floating-point data utilizing the OC1 algorithm [33].
The hyperparameter controlling the proportion of the training set used in pruning was tuned
using a grid search with the validation data. The search was to find the model with the highest
accuracy. If there was a tie in terms of accuracy, the model with the highest diversion ratio was
selected. It is important to note that the resulting node coefficients from the training process
were converted to fixed-point values offline before being presented to the node memory.
Similarly, input vectors were provided in fixed-point format to the input memory. For real
number representation, allocating 11 bits to the integer part and 5 bits to the fractional part
proved sufficient to achieve satisfactory classification accuracy for all datasets.

Every DT architecture was implemented using the Verilog hardware description
language, and the implementation codes underwent simulation, synthesis, and imple-
mentation using Xilinx’s Vivado Design Suite, targeting the Kintex-7 family FPGA. This
comprehensive evaluation process ensures a thorough examination of the proposed archi-
tectures across a diverse set of datasets. Note that there are 168 DT architectures in total: 6
validation runs, 14 datasets, and 2 DT architectures. The oblique DT classifier code was
written in C programming language and was used to generate all experimental results
other than hardware-related ones.

Table 2 shows the tree height, number of nodes in each tree, number of attributes,
and number of classes for each dataset. Note that the tree heights and node counts are
presented as average values computed over six distinct tree models, each corresponding
to a cross-validation run. These values are rounded off to the nearest integers. Upon
inspection of the table, a significant variation is evident in both the number of nodes in
a tree and the number of attributes across different datasets. Specifically, the number of
nodes in a tree ranges from 6 (Iris) to 38 (Car), while the number of attributes varies from 3
(Survival and Haber) to 33 (Ion). This highlights the unique characteristics inherent in each
dataset. Despite the diversity, a common observation is that taller trees tend to contain
more nodes, reflecting a general trend across the datasets.
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Table 2. Tree model size (height and node count) and basic dataset information.

Dataset Tree Height Node Count Num. of Attributes Num. of Classes

Car 7 37 6 4

Ecoli 6 28 7 8

Wine 3 7 13 3

Survival 5 15 3 2

Diabetes 6 26 8 2

Iris 3 6 4 3

Hayes 4 12 5 3

Scale 5 16 4 3

BC 4 12 9 3

Ion 5 14 33 2

Glass 6 26 9 6

Haber 6 19 3 2

Liver 7 28 6 2

Raisin 6 21 7 2

Average 6 24 8.2 3.2

5.1. Effectiveness of Potential Error Detection

The effectiveness of the potential error detection mechanism is crucial in the proposed
architectures because it affects the usefulness of the disabling and skipping schemes. The
mechanism should be able to detect input vectors that are likely to experience different
node traversal. Table 3 shows how many input vectors are detected as potentially erroneous
(Det. ratio), how many input vectors with diversions are detected (Det. coverage (diversion)),
how many input vectors with a class switch are detected (Det. coverage (class)), and how
many false alarms exist in the potential error detection (False alarm ratio). Note here that
an input vector is considered as potentially erroneous if a potential error is detected while
processing the input vector. The last column of the table indicates how much reduction
is achieved in terms of the number of visited nodes if we stop processing an input vector
once it is detected as potentially erroneous. Because no node diversion and class switch
occur for BC, both detection coverage ratios of BC are N/A.

While majority of node diversions and class switches are detected successfully, the
detection ratios seem to be high compared with the diversion ratios presented in Table 1.
This observation aligns with the high false alarm ratios reported in Table 3. However,
it should be noted that a high false alarm ratio is not necessarily detrimental because it
provides more opportunities for subsequent disabling and skipping schemes. It is important
to highlight that the detection mechanism does not flag arbitrary input vectors as potentially
erroneous. Instead, it identifies input vectors that are inherently more challenging to be
correctly classified. This nuanced approach to detection, targeting vectors with higher
classification difficulty, will be further elucidated in the subsequent section.

The reduction ratios generally exhibit a proportional relationship to the detection
ratios, but there are a few exceptions, such as the cases with Hayes and Scale. Despite having
similar reduction ratios, these datasets display different detection ratios. Specifically, the
ratio of Hayes is approximately twice as high as that of Scale. This discrepancy is associated
with the timing of the potential error detection. When a potential error is detected earlier
in the decision tree traversal, it results in the skipping of more nodes. Conversely, if the
detection occurs near a leaf node, fewer nodes will be skipped. Therefore, the variation in
detection ratios for different datasets can be attributed to differences in how early potential
errors are identified during the classification process.
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Table 3. Effectiveness of the potential error detection mechanism.

Dataset Det. Ratio Det. Coverage Det. Coverage False Alarm Reduction
(Diversion) (Class) Ratio Ratio

Car 0.151 0.808 0.833 0.940 0.096

Ecoli 0.310 0.877 0.882 0.648 0.165

Wine 0.163 1.000 1.000 0.791 0.093

Survival 0.367 0.756 1.000 0.779 0.252

Diabetes 0.398 0.949 0.880 0.643 0.213

Iris 0.112 0.667 0.667 0.839 0.058

Hayes 0.263 0.708 0.625 0.848 0.15

Scale 0.137 0.900 1.000 0.920 0.142

BC 0.153 N/A N/A 1.000 0.090

Ion 0.518 0.911 0.850 0.919 0.310

Glass 0.277 0.817 0.792 0.708 0.127

Haber 0.255 0.711 0.778 0.682 0.163

Liver 0.467 0.910 0.917 0.627 0.258

Raisin 0.219 0.806 0.781 0.484 0.216

Average 0.265 0.833 0.849 0.756 0.162

5.2. Effectiveness of Probability-Based Class Prediction

Indeed, the proposed probability-based class prediction and the subsequent dis-
abling/skipping mechanisms serve the crucial function of optimizing the utilization of
opportunities created by the potential error detection mechanism. By accurately predicting
the class of an input vector flagged as potentially misclassified, the probability-based class
prediction method ensures that even if the processing of the vector is halted or skipped,
a meaningful and informed class assignment can be provided. A reduction in energy
and execution time is directly attributable to the disabling and skipping mechanism, but
without the probability-based class prediction, some of the classification outputs cannot be
provided, impairing the practicality of the DT classifier.

Table 4 shows how the probability-based class prediction mechanism performs com-
pared with the baseline fixed-point DT. The Prediction accuracy column contains the pre-
diction accuracies of the probability-based class prediction for the input vectors that are
detected by the potential error detection mechanism. The classification accuracies of the
baseline fixed-point DT for the same input vectors are presented in Original accuracy. The
Overall accuracy column holds the classification accuracies of the baseline fixed-point DT
for all input vectors. This column is added to the table to be compared with the Original
accuracy column so that the effectiveness of the potential error detection mechanism can be
revealed. The ratios presented in the Both correct column indicate how many of the input
vectors are correctly classified by both the original classification method and the proposed
probability-based class prediction. Similarly, the Both incorrect column contains ratios for
input vectors that are incorrectly classified by both classification methods. The I2C column
depicts ratios for input vectors that are incorrectly classified by the baseline fixed-point
DT but are correctly classified by the probability-based class prediction. Conversely, the
C2I column represents ratios of input vectors that are correctly classified by the baseline
fixed-point DT but are incorrectly classified by the probability-based class prediction. These
detailed metrics provide insights into the specific contributions and areas of improvement
offered by the proposed mechanisms, shedding light on how effectively they address
misclassifications identified through the potential error detection mechanism.



Electronics 2024, 13, 410 14 of 18

The table reveals that the probability-based classification outperforms the baseline
fixed-point DT for input vectors flagged as potentially erroneous. This observation holds
true across all datasets except for Car, Iris, BC, and Ion. On average, the probability-based
classification exhibits a 7.7% higher accuracy compared with the baseline fixed-point DT for
the identified flagged input vectors. It is important to note that because both classification
mechanisms produce identical results for input vectors not detected by the potential error
detection mechanism, the overall accuracy of the proposed architectures surpasses that
of the baseline fixed-point DT architectures. This is corroborated by the results presented
in Table 5, underscoring the effectiveness of the proposed mechanisms in improving the
overall accuracy of the DT implementations.

Table 4. Effectiveness of probability-based class prediction (I2C: incorrect to correct; C2I: correct to
incorrect).

Dataset Prediction Original Overall Both Both I2C C2IAccuracy Accuracy Accuracy Correct Incorrect

Car 0.744 0.778 0.915 0.678 0.156 0.066 0.100

Ecoli 0.642 0.606 0.764 0.468 0.220 0.174 0.138

Wine 0.857 0.735 0.928 0.641 0.049 0.216 0.094

Survival 0.789 0.742 0.724 0.710 0.180 0.078 0.031

Diabetes 0.640 0.606 0.697 0.392 0.146 0.248 0.215

Iris 0.781 0.831 0.951 0.781 0.169 0.000 0.050

Hayes 0.547 0.424 0.672 0.331 0.360 0.215 0.093

Scale 0.690 0.668 0.913 0.551 0.193 0.139 0.117

BC 0.864 0.889 0.937 0.843 0.090 0.021 0.046

Ion 0.883 0.883 0.884 0.867 0.101 0.017 0.016

Glass 0.625 0.581 0.647 0.535 0.329 0.090 0.046

Haber 0.810 0.586 0.699 0.474 0.079 0.336 0.112

Liver 0.658 0.547 0.632 0.351 0.146 0.307 0.196

Raisin 0.715 0.644 0.845 0.581 0.222 0.134 0.063

Average 0.724 0.672 0.794 0.573 0.177 0.151 0.099

The noticeable accuracy discrepancy (18%) between the Original accuracy and Overall
accuracy columns implies that the potential error detection mechanism does not flag any
arbitrary input vectors but flags input vectors that are harder to predict correctly (in
other words, easier to be incorrectly classified). Because the classification accuracy of the
baseline fixed-point DT for flagged input vectors (Original accuracy) is relatively low, the
probability-based class prediction mechanism does not need to be state of the art to match
the accuracy of the baseline fixed-point DT. This is an important advantage for the potential
error detection mechanism; a high false alarm ratio without this characteristic may make
the probability-based class prediction fail to catch up with the classification accuracy of the
baseline DT. A crucial observation from the table is that if the proportion of I2C is larger
than that of C2I, it signifies that the number of input vectors whose classification outcome
is changed from being incorrect to being correct by the probability-based class prediction
outweighs the number of input vectors whose classification outcome is changed from being
correct to being incorrect by the probability-based class prediction. This dynamic results in
an overall improvement in classification accuracy, further highlighting the positive impact
of the probability-based class prediction on the DT implementation.
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5.3. Effectiveness of the Proposed Architectures

The efficacy of the proposed DT architectures is summarized in Table 5, encompassing
classification accuracy, dynamic energy consumption, resource utilization, and execution
time. Dynamic energy was estimated by the power estimation tool of the Vivado Design
Suite, utilizing simulation activity files from functional simulations. Execution time was
estimated by multiplying the simulation clock cycle counts and clock periods obtained
from the Vivado timing analysis. Each result in the table is an average value computed
from six validation runs.

Table 5. Effectiveness of the proposed architectures: accuracy, energy estimation, and execution time.

Dataset
Accuracy Dynamic Energy Resource (LUT/Register) Exe. Time

Fixed-Point Proposed Disabling Skipping Disabling Skipping Skipping

Car 1.002 0.996 0.946 0.927 1.023/1.006 1.003/1.000 0.841

Ecoli 0.987 1.013 0.785 0.883 1.044/1.003 1.013/1.001 0.840

Wine 0.992 1.000 1.005 0.929 1.010/1.001 1.008/1.000 0.905

Survival 0.988 1.006 0.938 0.775 1.101/1.005 1.027/1.001 0.751

Diabetes 0.983 1.001 0.877 0.804 1.020/1.005 1.006/1.001 0.666

Iris 1.005 1.000 1.084 0.976 1.024/1.004 1.024/1.001 0.933

Hayes 1.008 1.045 0.813 0.880 1.030/1.006 1.021/1.002 0.792

Scale 1.001 1.004 1.000 0.877 1.036/1.007 1.010/1.001 0.838

BC 1.001 0.995 1.005 0.920 1.028/1.002 1.005/1.000 0.875

Ion 1.011 1.011 0.685 0.696 1.006/1.001 1.002/1.000 0.660

Glass 1.004 1.019 0.960 0.893 1.032/1.003 1.014/1.001 0.852

Haber 0.984 1.031 0.941 0.863 1.084/1.007 1.024/1.002 0.827

Liver 0.931 1.017 0.827 0.758 1.061/1.004 1.012/1.001 0.706

Raisin 0.987 1.000 0.937 0.792 1.049/1.004 1.006/1.001 0.805

Average 0.992 1.010 0.915 0.855 1.039/1.004 1.012/1.001 0.807

The two columns of Accuracy show the classification accuracies of the baseline fixed-
point oblique DTs [25] and the proposed DTs. The normalization of values in these columns
to the accuracies of software floating-point oblique decision trees (DTs) explains why some
accuracies may be greater than 1. In this context, an accuracy greater than 1 signifies that
the corresponding fixed-point DT outperforms the floating-point DT in terms of accuracy.
Normalization to a reference value—in this case, the accuracy of the software floating-point
DT—allows for a comparative analysis, facilitating the assessment of how well the fixed-
point DTs perform relative to the floating-point counterpart. This approach provides a
standardized metric for evaluating the accuracy improvement achieved by the proposed
fixed-point DT architectures.

As shown in the columns, both fixed-point implementations closely match the floating-
point counterpart. For certain datasets (Hayes, Scale, Ion, and Glass), both fixed-point
DTs exhibit higher accuracies than the floating-point DT. This anomaly can be attributed
to the fact that switched classification outputs due to rounding inadvertently convert
incorrect classifications to correct classifications more frequently than they convert correct
classifications to incorrect classifications. Regarding the proposed DT, the probability-based
class prediction mechanism plays a role too. On average, the accuracies of the proposed
DTs are slightly higher than those of the baseline fixed-point DTs. This observation affirms
the effectiveness of the potential error detection and the probability-based class prediction
mechanisms in improving the overall accuracy of the DT implementations.
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The dynamic energy consumption of the proposed DT is presented in the columns
denoted as Disabling and Skipping. Note that Disabling and Skipping denote the proposed
pipeline and recurrent DT architectures, respectively. The values in these columns are the
energy consumption ratios, which were normalized to the energy consumptions of the
baseline fixed-point pipeline architecture and recurrent architecture, respectively. As seen
from the table, both schemes reduce energy consumption, and the amount of the reduction
is proportional to the traversed node reduction ratio (Reduction ratio) in Table 3. In fact, the
reduction in energy consumption is less than the traversed node reduction ratio because of
the extra hardware added to implement the proposed mechanisms. Because of the extra
hardware, the proposed schemes consume a bit more energy than the baseline fixed-point
DTs for Wine, Iris, and BC, for which the amount of disabled or skipped computations is
relatively small.

In the Resource(LUT/Register) column, the number of utilized slice LUTs and slice
registers are presented. The values in the column are normalized to the number of LUTs
and registers utilized to implement the baseline fixed-point DT architectures. From the
table, it is confirmed that the extra hardware of the proposed DT architectures can be
implemented without consuming too much of the FPGA resource.

Execution time reduction is observed only from the recurrent architecture because in
the pipeline architecture, every input vector has to go through all pipeline stages, even when
the potential error flag is set. The amount of execution time reduction is also proportional
to the traversed node reduction ratio shown in Table 3.

In summary, the proposed fixed-point oblique DT architectures demonstrate classi-
fication accuracies comparable with their software implementation counterparts. While
they incur a slightly higher FPGA resource requirement than the baseline DT architectures
due to the incorporation of additional hardware mechanisms, these extra features enable
the proposed DTs to achieve classification speeds that are 21.6% faster while consuming
less dynamic energy. The dynamic energy reduction is measured at 8.3% and 14.2% for the
pipeline and recurrent architectures, respectively.

6. Conclusions

The decision tree is a simple yet versatile classification algorithm. Its simplicity and
commendable classification performance make it a frequent choice for hardware imple-
mentation in embedded systems. In this context, we present efficient implementations
of a fixed-point oblique DT. The proposed architectures feature hardware enhancements
designed by leveraging the algorithmic features of DTs, specifically focusing on the compu-
tation at each node for child node determination and the tree traversal from the root node
to a leaf node. Firstly, utilizing the node computation feature, we detect an input vector
that may lead to a rounding-induced tree traversal diversion and flag it as erroneous. This
detection mechanism successfully identifies approximately 85% of node diversions. Subse-
quently, further processing of the vector is either disabled or skipped depending on the
architecture, thereby enhancing classification speed and energy efficiency. Lastly, to provide
a classification output for a flagged and interrupted input vector, we employ a probability-
based class prediction method. This method maintains the overall classification accuracy
at the same level as existing fixed-point oblique DT architectures. This enhancement is
rooted in a DT algorithm’s inherent characteristic: DT classification is conducted step by
step by traversing tree nodes. In comparison with existing fixed-point implementations,
the proposed implementation demonstrates a 23.9% faster classification speed (specifically
for the recurrent architecture) while consuming 11.5% less dynamic energy, all without
sacrificing classification accuracy. These enhancements have the potential to improve user
experience, leading to more responsive services and extended battery life, particularly if
the proposed designs are integrated into smart embedded devices. Although the proposed
architectures are designed for a single DT, they are expected to be versatile enough for
use in ensemble classifiers as a fundamental classifier design. Furthermore, they can be
seamlessly integrated with other hardware-centric implementation techniques.
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The future enhancement of the proposed architectures will be explored along three
main directions. Firstly, the probability-based class prediction can undergo refinement to
achieve higher accuracy. Because this prediction is carried out offline during the training
phase, a more sophisticated prediction algorithm can be employed without impacting
the DT hardware. Secondly, further improvement is conceivable through potential error
detection. As illustrated in Section 4.1, f up is approximated by adding n×SPV to f down,
where n represents the number of multiplications in node computation. In the original
mechanism, n is set to the number of attributes for each dataset. However, optimizing n for
each dataset is a potential enhancement, offering the possibility of improving the detection
ratio and/or classification accuracy. This optimization allows for a more tailored approach
to potential error detection, adapting to the characteristics of individual datasets and
thereby potentially enhancing the overall performance of the system. Lastly, an exploration
will be conducted on an implementation utilizing dual fixed-point representation [34]. This
approach combines the simplicity of fixed-point arithmetic with the broader dynamic range
of floating-point arithmetic. The investigation will assess accuracy, classification speed, and
energy consumption, with the aim of identifying a more suitable DT implementation for
embedded systems.
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