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ABSTRACT 
 

The remote sensing is one of the precision technologies, can be used to monitor and assess the 
target area or object such as soil, crop, and water. Hyperspectral imaging (HSI), also known as 
imaging spectrometry or hyperspectral remote sensing, is a combined technique of spectroscopy 
and imaging system for sensing spectral information of an area or object. It involves capturing 
images of an object using multiple distinct optical bands that cover a wide range of the 
electromagnetic spectrum (350-2500 nm). The hyperspectral bands are continuous, narrow, and 
contagious and contain hundreds and thousands of numbers. Hyperspectral remote sensing is 
particularly valuable for gathering precise and up-to-date information necessary for agricultural 
planning and precision farming. HSI technology is the employment of hyperspectral sensors aids in 
analyzing soil physical (bulk density, texture, water content), chemical (pH, EC, SOC, and macro 
and micro nutrients), biological (SOM) properties and helps to categorize different crop varieties, 
identify pests and diseases, and assess crop yield and water stress in plants. The spectral 
reflectance of soil is affected by its properties such as mineral composition (Fe oxides), organic 
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matter, soil moisture, and texture. For example, the spectral reflectance will be more if soil has less 
organic matter. The chemical bonds of soil molecules interact with the electromagnetic spectrum, 
and produce distinct pattern of reflectance. But the data collected from hyperspectral imaging are 
required big storage due to its large amount of data and finding the most appropriate hyperspectral 
image classification algorithm is a challenging task. So, these problems should be solved in future 
and national soil spectral library is needed for calibration of models which helps for efficient use of 
hyperspectral imaging technology. 

 

 
Keywords: Hyperspectral imaging technology; crop yields; climate change; precision agriculture. 
 

1. INTRODUCTION 
 
Agriculture is the foundation of human 
civilization, as it has allowed us to produce 
enough food to support large populations [1]. The 
face of agriculture has changed as a result of 
technological advancements during the past 
century, such as the Green Revolution [2]. The 
Green Revolution was a period of agricultural 
development that began in the 1940s and 1950s. 
It involved the introduction of new, high-yielding 
crop varieties, as well as the use of synthetic 
fertilizers and pesticides. These new 
technologies led to a significant increase in crop 
yields, which helped to ensure food security, 
particularly in developing countries [3]. Currently, 
the climate change and population growth are 
putting a strain on global food production. In that, 
the world's population is expected to grow by 2 
billion people by 2050 and the total                       
demand for food will rise between 50                      
and 60 percent between 2019 and 2050 [4]. 
However, if crop yields decline due to climate 
change, it will be more difficult to meet this 
demand [5].  
 
To meet the increasing demand for food as the 
world's population grows, intensive agriculture is 
a method of farming that uses large amounts of 
resources to produce more food on a smaller 
area of land. If current trends of agricultural 
intensification in richer nations and land clearing 
in poorer nations continue, we could lose 1 billion 
hectares of land globally by 2050. This would 
lead to an increase in greenhouse gas emissions 
of 3 gigatons per year and nitrogen use of 250 
million tons per year. Human activities, such as 
intensive agriculture, overgrazing, deforestation, 
water pollution, and the overuse of fertilizers and 
pesticides have had a significant negative impact 
on arable land, with over 35% of it being 
degraded in the past 6-7 decades. This 
degradation has led to increased salinization, 
loss of fertility, soil erosion, and desertification. In 
order to create a production system that is 
environmentally sustainable as well as 

economically feasible, we need to develop new 
techniques that can increase crop yields while 
using fewer resources and reducing pollution. 
Precision agriculture is one of the techniques that 
helps us to develop reliable models of water and 
nutrient movement in soil, manage resources 
efficiently, and protect the environment by 
accurately estimating the spatial variability of soil 
properties. 

 
Precision agriculture, also known as precision 
farming or smart farming, refers to the use of 
technology and data analytics to optimize 
agricultural practices and inputs and increase 
productivity while minimizing waste. Precision 
agriculture (PA) plays a crucial role in 
establishing sustainable agricultural systems in 
the 21st century. PA uses a variety of 
technologies, such as Global Positioning System, 
Geographic Information System, Remote 
Sensing, sensors, and data analysis, to collect 
data about crop conditions and soil variability. 
This data can then be used to make more 
informed decisions about how to apply inputs, 
such as water, fertilizer, and pesticides. For 
example, PA can be used to map the nutrient 
levels in a field. This information can then be 
used to apply fertilizer only where it is needed, 
which can help reduce nutrient runoff and 
pollution. In that, Remote sensing systems, 
which use information and communication 
technologies, typically generate a large amount 
of spectral data due to the high spatial, spectral, 
radiometric, and temporal resolutions required for 
precision agriculture applications. Remote 
sensing is defined as “the science and art of 
obtaining information about an object, area or 
phenomenon through the analysis of data 
acquired by a device that is not in contact with 
the object, area and phenomenon in the 
investigation” (Lillsand and Kiefer, 1992). 
Remote sensing technology, such as satellites, 
manned aircraft, and unmanned aerial vehicles 
(UAVs), are employed in the process of 
agricultural remote sensing to systematically 
observe and analyse agricultural multi-factors [6]. 
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Agricultural remote sensing is a newer 
technology that has quickly become a valuable 
tool for farmers and agricultural researchers. It 
uses satellite imagery and other data to collect 
information about crops and fields, such as crop 
health, soil moisture, and pest infestations. This 
information can be used to make more informed 
decisions about crop management, such as 
when to irrigate or apply pesticides. The use of 
agricultural remote sensing is growing rapidly, as 
it offers several advantages over traditional 
methods of agricultural monitoring, such as being 
faster, more precise, and less labor-intensive [7]. 
Remote sensing (RS) of soils and crop plants are 
the use of satellite imagery to collect data about 
soil and plant properties from a distance. There 
has been tremendous progress in both data 
acquisition technology and data processing 
techniques, which has made RS of soils and 
plants a more powerful and versatile tool. 
 

2. HYPERSPECTRAL REMOTE SENSING 
 
The human eye can only see a narrow range of 
the electromagnetic spectrum, but multispectral 
imaging sensors can capture images in a wider 
range. This allows us to identify materials based 
on their unique spectral signatures. Most 
multispectral imaging systems use only 3 to 6 
spectral bands, which limits the amount of 
information that can be gathered. However, 
recent advances in hyperspectral sensing have 
made it possible to capture hundreds of spectral 
bands in a single acquisition. This allows for 
much more detailed analysis of materials. 
Hyperspectral imaging is a powerful tool for 
agriculture, as it can be used to identify crop 
varieties, pests, diseases, and water stress. It 
can also be used to assess soil characteristics 
such as composition, physical properties, 
humidity, and nutrient levels. 
 
Hyperspectral imaging, also known as imaging 
spectrometry, is a technique for sensing spectral 
information. It involves capturing images of an 
object using multiple distinct optical bands that 
cover a wide range of the electromagnetic 
spectrum. Hyperspectral remote sensing is 
particularly valuable for gathering precise and 
up-to-date information necessary for agricultural 
planning and precision farming. It employs a 
well-designed instrument that captures complete 
images comprising hundreds of spectral bands of 
the observed objects. By analyzing the spectral 
signatures extracted from the hyperspectral 
image, it becomes possible to classify or identify 
various features within the displayed area. 

Hyperspectral imaging detectors typically detect 
light within the range of 400-2500 nm, which 
encompasses the visible, near-infrared (NIR), 
and short-wave infrared (SWIR) frequency 
bands. Hyperspectral imaging technology is 
widely utilized in agriculture, specifically for 
precision farming and agricultural advancement. 
An example of this technology is the employment 
of hyperspectral sensors to categorize different 
crop varieties, identify pests and diseases, and 
assess crop yield and water stress. It also aids in 
analyzing soil properties such as shape, 
composition, physical attributes, moisture levels, 
and nutrient content. This article provides an 
overview of the technology and its applications in 
remote sensing imagery for soil analysis and 
crop growth evaluation. 
 

3. HISTORY 
 
The concept of "hyperspectral imaging" was 
initially introduced in the field of remote sensing, 
which involves observing a target without 
physical contact. The term was first mentioned 
by Goetz et al. in 1985, referring to the use of 
imaging to directly identify surface materials. The 
era of hyperspectral imaging began in the late 
1970s and early 1980s when airborne mineral 
mapping became possible. A crucial 
advancement in hyperspectral technology was 
the invention of the first CCDs (charge-coupled 
devices) by George Smith and Willard Boyle in 
1969. This invention played a significant role in 
advancing hyperspectral imaging. Substantial 
progress in hyperspectral imaging systems 
occurred throughout the 1980s and 1990s, 
requiring extensive development efforts in 
electronics, hardware, computing, and software. 
 
Starting in the 1980s, the origins of hyperspectral 
imaging can be traced back to the airborne 
imaging spectrometer (AIS), which was 
developed by Alexander Goetz and his 
colleagues at NASA's Jet Propulsion Laboratory 
(JPL), California Institute of Technology, in 
Pasadena, California. Subsequently, in 1983, 
JPL proposed and created the hyperspectral 
Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS) to extend the capabilities of ground-
based spectrometers to aerial platforms. In 1987, 
AVIRIS captured its first spectral images, 
becoming the first imaging spectrometer to 
measure the solar reflected spectrum from 400 
nm to 2500 nm at 10 nm intervals [8]. Following 
the success of AVIRIS, significant advancements 
in sensor technology, calibration techniques, and 
data systems have led to the development of 
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various multispectral and hyperspectral 
instruments, both ground-based and airborne. 
While initially designed for remote sensing 
applications, hyperspectral imaging has since 
found diverse applications in areas such as 
agriculture [9], environmental studies [10], 
geology [11], pharmaceuticals [12], medicine, 
and food quality and safety [13], [14], [15], [16]. 
Hyperspectral imaging operates on the 
fundamental principle that different materials 
exhibit unique patterns of reflecting, scattering, 
absorbing, and emitting electromagnetic energy 
at specific wavelengths due to variations in their 
chemical composition and physical structure. 
These distinctive patterns, known as spectral 
signatures or spectral fingerprints, can be 
represented as curves showing the percentage 
of reflectance, absorbance, or transmittance at 
different wavelengths for a particular material. By 
analyzing these spectral signatures, it is possible 
to characterize, identify, and differentiate 
between different types of materials present in 
each pixel of an image. The processed 
hyperspectral data allows for automatic 
identification of features with specific spectral 
signatures and mapping of attributes' spatial 
distribution. 
 
Hyperspectral imaging is commonly defined as 
the simultaneous capture of spatial images in 
numerous contiguous spectral bands from a 
remote platform. This unique imaging technique 
combines the capabilities of imaging and 
spectroscopy, enabling the extraction of physical 
and geometric properties (such as shape, size, 
appearance, and color) as well as the chemical 
composition of the imaged object through 
spectral analysis. It is important to note that 
hyperspectral imaging is one type of spectral 
imaging, alongside multispectral and 
ultraspectral imaging. Each type involves 
capturing a stack of images of the same object, 
with each image representing a different 
narrowband of the spectrum. The distinction lies 
in the number of bands and the form of the 
obtained spectrum. Ultraspectral imaging is 
commonly used for systems with very fine 
spectral resolution, while hyperspectral imaging 
systems are characterized by many contiguous 
and regularly spaced bands. On the other hand, 
multispectral imaging systems typically have only 
a few spectral bands (usually less than 10), and 
each pixel does not provide a complete 
spectrum. In contrast, every pixel in a 
hyperspectral image contains a full spectrum. 
This abundance of data in hyperspectral images 
offers highly detailed information about the 

physical and chemical composition of the imaged 
objects. However, processing this extensive data 
requires more advanced methods and 
techniques. 
 
The terms "Hypercube," "spectral cube," "data 
cube," or "spectral volume" are all used 
interchangeably to describe the structure of a 
hyperspectral image. A hyperspectral image is a 
three-dimensional (3D) block of data that 
consists of a series of two-dimensional images 
stacked together, each representing a different 
wavelength. This 3D block includes two spatial 
dimensions (rows and columns) and one spectral 
dimension (wavelengths). The hyperspectral 
image, denoted as I (x, y, λ), can be perceived 
either as an image I (x, y) at each specific 
wavelength λ or as a spectrum I (λ) at each 
individual pixel (x, y). The individual elements in 
the hypercube I (x, y, λ) are referred to as 
"voxels," while in the two-dimensional image I (x, 
y) at a single wavelength, they are called 
"pixels." However, in the context of this paper, 
both terms (pixel or voxel) are used 
interchangeably. The values of reflectance or 
absorbance of a voxel or a set of voxels (as a 
region of interest, ROI) at all wavelengths are 
simply referred to as the "spectrum." Each pixel 
in the possesses a unique spectral signature, 
representing a specific point in the image. 
Additionally, the complete spatial characteristics 
of the objects under examination can be 
observed in individual grayscale images at 
different wavelengths, demonstrating how the 
object exhibits varying intensity values based on 
its chemical composition. Consequently, an 
image can be analyzed by considering individual 
wavelengths or combinations thereof. 
 
In the hypercube, images taken at adjacent 
wavelengths tend to be similar, while images 
captured at distant wavelengths can differ 
significantly and may contain independent 
information. Furthermore, no single wavelength 
image provides sufficient information to fully 
describe the object, which elucidates the utility of 
hyperspectral imaging in object analysis [17]. 

 
4. HYPERSPECTRAL IMAGING OF SOILS 
 
The effectiveness of precision agriculture (PA) 
relies heavily on an efficient and precise 
approach to determine soil properties within the 
field. This information is crucial for farmers to 
accurately calculate the optimal number of inputs 
for achieving the best crop performance while 
minimizing negative environmental impacts. The 
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conventional method of grid sampling, which 
explores soil variation within the field, is no 
longer considered suitable due to its labor-
intensive and time-consuming nature, as well as 
its limited spatial coverage. However, remote 
sensing (RS) offers a new and advantageous 
tool for gathering information in PA, as it is cost-
effective, rapid, and provides relatively high 
spatial resolution. Significant advancements 
have been made in utilizing RS to determine 
various agriculturally significant soil properties. 
 
A wide range of soil properties, such as textures, 
organic and inorganic carbon content, macro- 
and micro-nutrients, moisture content, cation 
exchange capacity, electrical conductivity, pH, 
and iron, have been successfully quantified using 
RS to different extents. These applications have 
varied from analyzing soil samples in a 
laboratory setting using a bench-top 
spectrometer to creating soil maps at a larger 
scale using satellite hyper-spectral imagery. The 
visible and near-infrared regions are the most 
employed for inferring soil properties, while the 
ultraviolet, mid-infrared, and thermal-infrared 
regions have been occasionally utilized. In terms 
of data analysis techniques, multiple linear 
regression (MLR), principal component 
regression (PCR), and partial least squares 
regression (PLSR) are the three most widely 
employed methods. 
 

a) Soil Texture 
 
The composition of soil particles, including sand, 
silt, and clay, determines soil texture. This 
environmental factor is highly significant as it 
influences soil degradation, water movement, 
and ultimately, soil quality and productivity [18]. 
Understanding the variability in soil texture is 
essential for implementing targeted farming 
strategies that optimize the use of resources 
such as water and fertilizers, leading to cost 
reduction and minimized environmental impact 
[19]. Traditional approaches to mapping soil 
texture require extensive collection and analysis 
of numerous soil samples to accurately assess 
its spatial variation [20], which can be expensive 
and time-consuming. 
 
To address these challenges, researchers are 
increasingly exploring indirect estimation 
methods that utilize proximal and remote 
sensors, including ground-based or airborne 
reflectance spectroscopy [21], [22]. Numerous 
studies have assessed the potential of high-
resolution spectroscopy (HRS) for estimating soil 

texture, with laboratory and airborne imaging 
spectroscopy. However, the direct determination 
of soil texture from satellite hyperspectral 
imagery is still limited to a few studies. 
Estimating soil texture from spaceborne systems 
is more complex due to atmospheric distortions, 
as well as the low spatial and spectral resolution 
of the sensors [23]. To fully utilize data from 
future hyperspectral satellites, additional 
information is needed regarding sensor 
resolution, range, calibration, and validation. 
Developing more physically-based models would 
be a significant advancement in generalizing 
estimation approaches. However, this objective 
remains challenging at present [24]. 
 

b) Soil Moisture  
 
Soil moisture is important to plant development, 
contributes to climate change by participates in 
carbon formation and controls evaporation rates, 
filtering, drought monitoring, overflow. The 
conventional methods of soil moisture 
measurement such as thermogravimetric 
method, heat flux soil sensors, time domain 
reflectometry (TDR), microelectromechanical 
system are time consuming approaches and it 
predicts in small scale. But hyperspectral 
imaging technology helps to estimate the soil 
moisture over a large-scale area. Wang et al. 
(2023) compared prediction efficiency of Random 
Forest (RF) along with eight other algorithms to 
predict soil moisture (SM) in Tibetan grasslands 
[25]. Under climate change scenario, authors 
used temperature, precipitation, radiation data 
and normalized differentiation vegetation index 
(NDVI) to predict spatiotemporal variability of 
actual SM (SMa) and potential soil moisture 
(SMp). Their developed model predicted SM with 
higher prediction efficiency of 94% when using 
RF than other algorithms.  
 
In the past, there have been numerous studies 
conducted to understand the relationship 
between soil moisture and its reflectance. These 
studies were primarily carried out in controlled 
laboratory settings or outdoor environments. 
While recent research has shown that 
assimilating data from high-resolution satellites 
(HRS) into hydrological models can effectively 
estimate profile soil moisture, these findings only 
serve as case studies. They provide a starting 
point for other HRS users to create quantitative 
soil moisture maps. However, this innovative 
approach has not been thoroughly investigated 
or developed in this specific direction. 
Nevertheless, it shows promise and is necessary 
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because several challenges, such as low signal-
to-noise ratios, unreliable spectral band 
response, atmospheric interference with raw 
data, the requirement to position samples on the 
ground, and the absence of pixel-based physical 
or chemical models related to soil moisture 
content, remain unresolved. 
 

c) Soil Nutrient Prediction 
 
Soil nutrients are crucial for soil fertility, 
agricultural productivity, food security, and 
sustainable agriculture [26]. Mapping soil 
nutrients accurately and in a timely manner can 
help reduce nutrient loss and improve agricultural 
fertilization management. Traditional methods of 
monitoring soil nutrients in farmlands involve field 
sampling and laboratory analysis, which are 
inefficient and time-consuming. However, 
hyperspectral remote sensing (HRS) technology 
has the capability to detect even the slightest 
spectral changes in soil nutrients, making it a 
valuable source of information for modeling soil 
nutrients. 
 

Based on available records from the Web of 
Science, only a limited number of studies have 
focused on monitoring soil nutrients using HRS 
information. For instance, Song et al. conducted 
a study in Zengcheng, north of the Pearl River 
Delta, China. They collected 1,297 soil samples 
and measured the content of soil total nitrogen 
(TN), soil available phosphorus (AP), and soil 
available potassium (AK). In their research, they 
used hyperspectral images (115 bands) obtained 
from the Chinese Environmental 1A (HJ1A) 
satellite as auxiliary variables. These images 
were processed using reduce-dimension 
techniques such as Pearson correlation analysis 
and principal component analysis. The study 
compared different prediction models, including 
simple linear regression, support vector machine 
(SVM), random forest, and back-propagation 
neural network (BPNN). All models were trained 
using both field samples and preprocessed HRS 
variables. Model validations were based on 324 
independent data points. The study concluded 
that the most efficient method for mapping and 
monitoring soil nutrients at a regional scale was 
the application of hyperspectral imaging data 
with a BPNN model [27]. 
 

Another study by Yu et al.  focused on soil 
property modeling using HRS in Shenzha County 
of the Qiangtang Plateau, located in the 
northwestern Qinghai-Tibet Plateau, where 
alpine grasslands are the predominant land 

cover. The research involved collecting 
hyperspectral data at 67 sample points and 
obtaining soil samples at those locations to 
measure properties such as organic carbon, TN, 
total potassium, and total phosphorus. The study 
analyzed the correlations between soil properties 
and original bands as well as enhanced spectral 
variables derived from both field and satellite 
hyperspectral data. Regression models were 
developed to map the soil properties based on 
the relationships observed. The results showed 
significant correlations between the soil 
properties and vis_NIR bands, particularly the 
wavelengths of 1720-1738 nm. The stepwise 
regression models using enhanced spectral 
variables derived from satellite hyperspectral 
imaging produced reasonable spatial 
distributions of soil properties. The relative root 
mean square error values were 68.9% for soil 
organic carbon, 46.3% for TN, 31.4% for total 
phosphorus, and 45.5% for total potassium. This 
study indicated that the method based on 
hyperspectral data had great potential for 
predicting soil properties and could be applied to 
assess the growth conditions of the alpine 
grassland species Stipa purpurea [28]. 
 
The number of published papers on using HRS 
technology for monitoring soil nutrient elements 
is limited, and most of these publications are 
recent, suggesting that this aspect of HRS is still 
in its early stages. There are various types of 
hyperspectral sensors available, and further 
studies need to be conducted in different areas 
and for different land cover species to explore 
the full potential of HRS in monitoring soil 
nutrients. 
 

d) Soil Organic Carbon 
 

The role of soil organic carbon (SOC) is crucial 
for various chemical and physical processes in 
soil environments. It serves as a primary nutrient 
source for plants, aids in particle aggregation, 
contributes to soil structure development, 
enhances water storage capacity, and provides a 
habitat for soil organisms. Understanding the 
spatial distribution of SOC concentration in the 
topsoil is vital for effective crop management, 
guiding fertilizer, and chemical applications. 
Traditionally, mapping SOC concentration 
involved laborious methods such as collecting 
and analyzing numerous soil samples, calibrating 
spatial prediction models, and interpolating the 
results over the entire study area. These 
methods are expensive and time-consuming due 
to the high spatial variability of SOC. 
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In recent years, hyperspectral remote sensing 
(HRS) technology has emerged as a powerful 
tool for rapid and multiscale monitoring of SOC. 
Ground, airborne, and spaceborne hyperspectral 
sensors have been tested for this purpose. 
However, the application of spaceborne 
hyperspectral sensors is less frequent compared 
to airborne sensors, despite the advantages of 
synoptic view and repetitive coverage offered by 
satellite data. Consequently, exploring the 
potential of satellite hyperspectral data for SOC 
prediction has become a critical focus in the 
development of digital soil mapping. It should be 
noted that the use of airborne and satellite 
hyperspectral sensors for SOC estimation has 
mainly been limited to small agricultural or bare 
soil areas and is still in the testing phase. 
Moreover, most studies have relied on simple 
statistical methods for SOC prediction, which 
have limitations in terms of physical interpretation 
of results and the transferability of models across 
different sensors. These drawbacks have been 
pointed out by previous researchers [29]. 

 
e) Soil Salinity 
 
Soil salinity has been a significant and 
widespread issue causing land degradation for a 
considerable period, greatly limiting crop 
productivity [30]. It is crucial to accurately map 
and monitor salt-affected soils in order to make 
informed decisions promptly, such as adjusting 
management practices or undertaking 
reclamation and rehabilitation efforts [31]. 
However, the conventional techniques currently 
available for identifying and monitoring these 
salt-affected soils are costly, time-consuming, 
and require extensive sampling to capture spatial 
variations [32]. High-Resolution Spectroscopy 
(HRS) technology plays a vital role in the 
detection, mapping, and monitoring of salt-
affected surface features by offering rapid, 
timely, relatively inexpensive, and repeatable 
data. 
 

Numerous airborne and spaceborne 
hyperspectral sensors have been tested to 
assess the potential of HRS in salinity mapping, 
with positive outcomes. HRS has been widely 
employed to identify and map areas affected by 
salt, and several studies have demonstrated that 
hyperspectral data can be utilized to quantify the 
characteristics of saline soils at different scales. 
However, these studies primarily focused on 
identifying and mapping salt-affected soils, 
lacking a comprehensive characterization of their 
severity. Furthermore, most of these studies 

have remained in the experimental stage, with 
few evident practical application examples. 
Moreover, a variety of linear, nonlinear 
regression, and remote sensing image 
classification methods have been employed to 
identify and map soil salinity, causing confusion 
when selecting appropriate models or methods. 
These challenges underscore the need to 
explore universal quantitative models and 
methods and extensively apply them in practical 
settings to assess their true effectiveness. 
 

5. HYPERSPECTRAL IMAGING OF 
CROPS 

 
The use of remote sensing is an effective method 
for monitoring changes in the physical 
characteristics and health of crops, as well as for 
supporting precision agriculture practices [33]. 
Traditional approaches to detect and monitor 
important crop parameters require extensive 
sampling, time, and costly laboratory analyses, 
which are not feasible or environmentally 
sustainable on a large scale [34]. In contrast, 
remote sensing allows for the collection of 
information across large areas more quickly and 
at a lower cost per unit area compared to field 
sampling [35]. 
 
However, the use of multispectral remote 
sensors for crop analysis has limitations in 
accurately detecting crop changes due to their 
coarse spectral resolutions, which obscure 
detailed information about crop parameters [36]. 
Early multispectral images are hindered by 
spectral resolution issues, affecting the accuracy 
of variable retrieval and the ability to timely               
and effectively detect early signs of crop stress 
[37]. 
 
To overcome these limitations, hyperspectral 
remote sensing (HRS), also known as imaging 
spectroscopy or hyperspectral imaging (HSI), 
utilizes hundreds of narrow spectral bands that 
are sensitive to distinct biophysical and 
biochemical characteristics, providing a more 
detailed understanding of crops [38 and 39]. As a 
result, advancements in HRS offer opportunities 
for comprehensive mapping, modeling, and 
characterization of crop properties [40], 
particularly in detecting subtle changes in ground 
cover and its temporal variations. 
 
HRS can effectively address the aforementioned 
challenges and enable more accurate and timely 
detection of crop health. Ongoing research 
focuses on conducting hyperspectral 
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measurements in the field and laboratory to 
monitor agriculture and vegetation, retrieving 
plant traits from hyperspectral data in both leaf 
and canopy layers [41 and 42]. Additionally, 
efforts are being made to calibrate hyperspectral 
sensors, validate their products for agriculture 
and vegetation monitoring, and ensure the 
quality of retrieved information [43]. Statistical 
and computational methods are being developed 
to enhance agricultural and vegetation 
monitoring, while studies are exploring the 
impact of agricultural and vegetation 
environments on microbial load and the presence 
of surrounding species [44]. 
 

6. APPLICATION IN CROP MONITORING 
 
HRS, or hyperspectral remote sensing, offers an 
efficient method to extract plant parameters [45]. 
It has been widely utilized for various crop-
related purposes, including the retrieval of water 
content [46], weed management [47], estimation 
of evapotranspiration [48], yield prediction [49], 
detection of heavy metals [50], assessment of 
bioenergy potential [51], determination of stand 
density [52], measurement of crop residue [53], 
evaluation of gross photosynthesis [54] diagnosis 
of diseases [55], derivation of phenology [56], 
identification of species [57], estimation of 
nutrient concentration, assessment of biomass, 
and quantification of pigment content [58]. In 
general, pigment content and nutrient 
concentration have been the most studied 
aspects of HRS in crop monitoring for many 
years. However, the applications of HRS in crop 
monitoring have expanded over time, with more 
diverse and quantitative content. Particularly in 
recent years, there has been a focus on 
emerging agricultural research areas, such as 
the detection of heavy metals and retrieval of 
water content. It should be noted that most of the 
studies conducted on HRS were based on 
ground remote sensing platforms, with very few 
utilizing airborne or spaceborne remote sensing 
platforms. 
 

a) High Throughput Phenotyping (HTP) 
in the Field 

 
The continuous advancement of new 
technologies is crucial in order to effectively 
incorporate diverse data from various 
phenotyping systems. These systems should be 
consistent, automatic, multifunctional, and 
capable of high-throughput processing. It is 
important to focus on developing high-
performance, cost-effective technologies. 

Multifunctional devices for phenotyping generate 
large volumes of sensor data and images. 
However, the field of crop high-throughput 
phenotyping encounters fresh challenges in 
terms of storing, managing, and analyzing this 
data [59]. In recent times, high-throughput 
phenotyping or phenomics technologies have 
proven beneficial for plant breeding and crop 
production purposes. Researchers have worked 
on creating and testing different sensors, 
platforms, and algorithms for processing images 
in field-based phenotyping [60]. 
 

b) Chlorophyll Content 
 
Hyperspectral remote sensing with high spatial 
resolution can be used to estimate the amount of 
chlorophyll present. Accurate assessment of 
canopy chlorophyll content is crucial for 
measuring both biotic and abiotic stresses, as 
emphasized by Yang et al. Their research 
demonstrates the reliability of using 
hyperspectral remote sensing images to 
determine chlorophyll content at both the leaf 
and canopy levels. Moreover, utilizing  
chlorophyll content for evaluating forest              
growth stages and diseases can be 
advantageous [61]. 
 
Hyperspectral imaging enables the detection of 
modified spectral signatures caused by fungal 
infection. By analyzing chlorophyll fluorescence, 
which is influenced by the reduced physiological 
activity of tissues due to Fusarium, it becomes 
possible to identify the symptoms of this disease 
easily [62]. 
 
To obtain the average spectra of millet leaves, 
researchers intelligently extracted the region of 
interest and employed hyperspectral imaging to 
collect spectral and image information at various 
stages of millet leaf development. Maria and 
Xiaoyan (2020) demonstrated the efficiency of 
the CNN model in estimating the chlorophyll 
content of millet leaves. This model can 
effectively extract the intrinsic features of spectral 
data and simplify preprocessing [63]. 
 

c) Fungal Diseases Detection 
 
Hyperspectral imaging can identify fungal 
contamination by observing alterations in the 
spectral features, which also helps minimize the 
impact of Fusarium effects on the tissue's 
physiological activity. These effects form the 
basis for the analysis of chlorophyll fluorescence 
imaging [64]. 
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d) Drought Stress Detection 
 

Hyperspectral imaging is a technique that 
captures detailed information from plants without 
causing any harm. Various methods of data 
analysis exist to recognize both environmental 
and biological pressures on plants [65]. These 
methods primarily focus on distinguishing 
between healthy and diseased plants, assessing 
the severity of diseases, and identifying early 
signs of stress [66]. Hyperspectral imaging is 
becoming increasingly popular as a reliable tool, 
both in proximity and from a distance, to detect 
drought stress in agriculture [67]. Notably, a 
significant finding was that the standard 
deviations of multiple indices consistently 
increased as the water availability worsened. The 
dry treatment and plants experiencing repeated 
drought events showed noticeable 
enhancements [68]. 
 

e) Weeds Detection and Management 
 

The application of deep learning in automated 
weed control is a novel and advanced approach 
that offers superior precision compared to other 
methods. Deep learning has the potential to be 
employed across various crops to identify weeds 
[69] and automate the application of herbicides, 
addressing a research gap [70]. Khan et al. 
introduced a conceptual segmentation technique 
using a cascaded encoder-decoder network to 
detect weeds in crops. Current systems for 
categorizing weeds and crops are highly 
complex, involving numerous variables that 
require extensive training time [71]. To overcome 
these limitations, the researchers suggested 
using micro training networks in a cascade, 
generating coarse-to-fine predictions that can be 
combined to obtain the outcome [72]. 
 

f) Crop Classification 
 

The utilization of hyperspectral remote sensing 
enables the extraction and categorization of crop 
characteristics. Remote sensing data is 
disorganized, but the effective handling of 
unstructured data can be achieved using 
convolutional neural networks (CNNs) [73]. With 
their multiple bands, abundant spectral 
information, and sensitivity to subtle spectral 
variations among objects on the ground, 
hyperspectral data has successfully identified 
crop types, varieties, and obtained spatial 
distribution maps and planting structure 
information of crops. However, due to its high 
dimensionality and the extensive effort required 
for data processing, hyperspectral data is not 

suitable for accurate crop classification in large-
scale regions. Therefore, it is crucial to develop a 
strategy for dimension reduction and a classifier 
capable of accelerating the processing of 
hyperspectral data for future precise crop 
classification using hyperspectral remote sensing 
over broad regional areas [74]. 
 

7. KEY PROBLEMS AND CHALLENGES 
 

A) Limitation of Standard Datasets and 
Experiment Analysis 

 
Datasets play a crucial role in assessing and 
studying various subjects. It has been observed 
that there is a scarcity of publicly accessible 
benchmark hyperspectral datasets. Additionally, 
researchers may not employ the appropriate 
methodology for tackling challenging tasks if they 
deviate from the conventional evaluation 
approach in real-world scenarios. Different 
researchers have generated diverse datasets by 
modifying experimental parameters, which 
makes it improbable to replicate real-time 
situations and hinders comparative analysis 
between two techniques [75]. Techniques that 
prove effective on these limited and small-scale 
images can be easily extrapolated to larger real-
world images. Considering these factors, it is 
important for the hyperspectral remote sensing 
community to develop new open datasets [76]. 
 

b) Dimensionality Problem 
 
The challenge of dealing with the high 
dimensionality of hyperspectral data in remote 
sensing has been extensively studied. The term 
"virtual dimensionality" (VD) originally referred to 
the number of distinct spectral signatures present 
in hyperspectral data. In the past, VD was 
commonly used to determine the number of end 
members. Compared to intrinsic dimensionality, 
virtual dimensionality is a relatively new concept 
that, if properly understood, can significantly 
impact the processing of hyperspectral data [76]. 
 
HSI data, with its high number of dimensions, 
exhibits various artifacts that lead to 
misclassification. Like very high-resolution (VHR) 
images, HSI data demonstrates significant 
intraclass variability due to uncontrollable 
variations in the reflectance detected by the 
spectrometer. These variations are often caused 
by changes in atmospheric conditions, the 
presence of clouds causing occlusions, 
fluctuations in illumination, and other 
environmental factors [77]. 
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c) Deep Learning Limitations 
 

A deep learning system that operates without 
supervision is considered the most effective 
approach for analyzing hyperspectral data. It 
leverages large amounts of labeled images that 
are already available. On the other hand, 
supervised deep learning relies on extensive 
datasets. Previous studies have explored the 
transferability of unsupervised features learned 
from different types of images. Deep generative 
models such as generative adversarial networks 
(GANs) and variational autoencoders (VAs) show 
great potential in modeling unlabeled 
hyperspectral data. These models can simulate 
the generation of spectra and be utilized to 
quantify spectral variability. However, the 
computational requirements and memory 
demands of deep models with numerous 
variables are substantial. Researchers need to 
carefully choose the most suitable models that 
align with the characteristics of hyperspectral 
imaging (HSI) data while considering the inherent 
challenges of the HSI dataset and the limitations 
of deep models. To reduce computation time, it is 
crucial to select appropriate architectures, 
learning methods, and procedures that are well-
suited for the data. 
 

d) Mixed Pixel Classification 
 

The primary issue faced by hyperspectral 
imaging is the lack of labeled data. In 
comparison to multispectral remote sensing 
sensors like Sentinel or Landsat, there are 
limited numbers of active space-borne 
spectrometers capturing images, and the 
resulting data is often not publicly available. 
Additionally, airborne spectrometers cover a 
smaller area compared to satellite-based 
sensors. The availability of hyperspectral (HIS) 
datasets is also relatively limited [77]. 
Hyperspectral images contain many pixels, 
making it challenging to manually select the 
optimal spectra for vegetation and bare soil. 
Consequently, unsupervised approaches for 
extracting end members can perform better than 
supervised methods. However, the unmixing 
techniques [78] used are based on linear mixture 
models, and they may not effectively handle 
areas with significant nonlinear effects [79]. 
These effects present interesting opportunities 
for further exploration and processing. 
 

8. CONCLUSION 
 

Due to the abundance of spectrum information 
sensitive to many biophysical and biochemical 

characteristics of plants and soil, hyperspectral 
imaging offers enormous promise for applications 
in agriculture, particularly precision agriculture. In 
recent years, a variety of platforms, including 
satellites, aircraft, unmanned aerial vehicles 
(UAVs), and close-range platforms, have 
become more readily accessible for gathering 
hyperspectral images with various spatial, 
temporal, and spectral resolutions. Regarding the 
amount of space covered, the length of the flight, 
flexibility, operational complexity, and cost, these 
platforms likewise have different advantages and 
disadvantages. When selecting imaging 
platforms for particular research aims, these 
elements must be taken into account. To get 
beyond some of the restrictions, such as the 
limited battery life of UAV operations and the 
expensive price of hyperspectral sensors, more 
technology advancements are also required. 
 
Numerous agricultural applications of 
hyperspectral imaging have been successful, 
including estimating crop biochemical and 
biophysical properties, assessing crop nutrient 
and stress status, categorizing or detecting crop 
types, weeds, and diseases, and examining soil 
characteristics. 
 
Previous studies did not thoroughly assess crop 
status and growth-limiting factors since they only 
covered one or two of the many variables 
affecting crop growth performance and output. 
To get a better knowledge of these components' 
interactions and to ensure the best crop 
production and environmental preservation, it is 
crucial to integrate them. 
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