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An orexigenic subnetwork within the human 
hippocampus

Daniel A. N. Barbosa1,15, Sandra Gattas2,15, Juliana S. Salgado3, Fiene Marie Kuijper4,5,6, 
Allan R. Wang4, Yuhao Huang4, Bina Kakusa4, Christoph Leuze7, Artur Luczak8, Paul Rapp9, 
Robert C. Malenka10,11, Dora Hermes12, Kai J. Miller13, Boris D. Heifets3,10, Cara Bohon10, 
Jennifer A. McNab7 & Casey H. Halpern1,14 ✉

Only recently have more specific circuit-probing techniques become available  
to inform previous reports implicating the rodent hippocampus in orexigenic 
appetitive processing1–4. This function has been reported to be mediated at least  
in part by lateral hypothalamic inputs, including those involving orexigenic lateral 
hypothalamic neuropeptides, such as melanin-concentrating hormone5,6. This 
circuit, however, remains elusive in humans. Here we combine tractography, 
intracranial electrophysiology, cortico-subcortical evoked potentials, and 
brain-clearing 3D histology to identify an orexigenic circuit involving the lateral 
hypothalamus and converging in a hippocampal subregion. We found that 
low-frequency power is modulated by sweet-fat food cues, and this modulation  
was specific to the dorsolateral hippocampus. Structural and functional analyses  
of this circuit in a human cohort exhibiting dysregulated eating behaviour revealed 
connectivity that was inversely related to body mass index. Collectively, this 
multimodal approach describes an orexigenic subnetwork within the human 
hippocampus implicated in obesity and related eating disorders.

Orexigenic appetitive processing relies on the integration of sensory,  
interoceptive and hormonal signals to govern consummatory 
behaviours1,7. Dysregulation of this process leads to maladaptive eat-
ing behaviour such as binge eating and is associated with obesity8. 
Studies in rodents have demonstrated that hippocampal neuronal 
subpopulations respond to food cues and encode food-place mem-
ory1,2. Projections from the lateral hypothalamus (LH) are central 
to this orexigenic hippocampal function, as disturbance of this cir-
cuit leads to dysregulated eating behaviour5. These LH projections 
were found to express melanin-concentrating hormone (MCH)9, 
an orexigenic neuropeptide that is produced in the LH area (refers 
to the LH and its adjacencies, including parts of the zona incerta)5. 
MCH-containing projection neurons have been reported to influence 
the reward value of food with MCH overexpression being linked with  
the obese state10,11.

The underlying circuit in which the LH and hippocampus inter-
act, and its relevance to orexigenic appetitive processing in 
humans, which includes the pre-oral cue-driven process, are yet to 
be examined. Here we characterize the structural and functional 
involvement of the human hippocampus in food-related appetitive  
processing.

 
Appetitive processing within the dlHPC
Using probabilistic tractography in high-resolution, normative data 
from the 7T Human Connectome Project (HCP) release (n = 178), 
we found that tractography-defined LH interconnections (stream-
lines) converge in the dorsolateral hippocampus (dlHPC) subregion 
(Fig. 1a). We next investigated the functional involvement of dlHPC in 
the processing of a palatable taste. For brevity, we refer to the volume 
of the hippocampus outside the dlHPC subregion as the non-dlHPC 
subregion. More specifically, we tested the following hypotheses:  
(1) dlHPC spectral dynamics discriminate between sweet-fat and neu-
tral cues; and (2) spectral dynamics will differ between electrodes in 
direct contact with dlHPC and those in direct contact only with the 
non-dlHPC subregion. We measured local field potential activity 
(Fig. 1b) using intracranial electrodes (n = 54; 34 dlHPC contacts, 20 
non-dlHPC contacts) implanted into the human hippocampus while 
the participants (n = 9) performed a sweet-fat incentive task paradigm12 
(Supplementary Fig. 1a). The demographic and clinical characteris-
tics of all of the participants are described in Supplementary Table 1.  
In this paradigm, individuals were cued for 1 s with an image representa-
tive of either a sweet-fat or taste-neutral solution to be subsequently 
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delivered for consumption. We found that condition-specific 
prestimulus-normalized low-frequency power (around 3–14 Hz, with 
a primarily sustained peak of about 4–6 Hz; referred to hereafter as 
the low-frequency power cluster to reflect the frequency range of this 
cluster) in the dlHPC was significantly higher (P < 0.05, paired non-
parametric cluster-based permutation testing, using null-distribution 
cluster size to correct for multiple comparisons) during anticipation 
of the sweet-fat solution compared with a neutral taste (Fig. 1c). While 
higher frequencies may reflect more local activity, lower frequencies 
are thought to be advantageous in routing information across distant 
areas as their longer period accommodates the temporal demand of 
conduction velocity across multiple synaptic delays13. This profile was 
observed immediately after the cue (around 110 ms) and was localized 
to contacts within the dlHPC subregion (Fig. 1d,e).

We further investigated a potential role for the dlHPC low-frequency 
power cluster in learning the cue-palatable association. We hypoth-
esized that, if cluster power encodes an association between the visual 
cue and the appetitive reward, then power would increase as a function 
of trial number. This is because the participants learn the association 

of the visual cue and the appetitive solution, as well as the taste of the 
solution as a function of trial number. Indeed, cluster power was sig-
nificantly correlated with trial number for sweet-fat item anticipation 
(R = 0.102, P = 0.0021) but not for the taste-neutral item (R = 0.035, 
P = 0.292; Extended Data Fig. 1a). Moreover, the last 20 trials had sig-
nificantly higher cluster power compared with the first 20 trials for 
the sweet-fat condition (P = 0.014, unpaired permutation testing) but 
not for the taste-neutral condition (P = 0.198; Extended Data Fig. 1b). 
These results are contrary to the low-frequency power cluster reflecting 
mere visual processing. Repeated presentations of a visual stimulus is 
thought to lead to repetition suppression, possibly reflecting recog-
nition of old versus new items. Repetition suppression is measured 
as decreased hippocampal blood-oxygen-level-dependent (BOLD)  
activity14,15, and in hippocampal invasive electroencephalography (iEEG) 
data, it has been captured as decreased gamma and increased alpha 
(10–15Hz) power with repetition number, occurring 600–1,200 ms  
after stimulus presentation16. Rather, these results support the hypoth-
esis that this early low-frequency power cluster is increased as the 
cue-palatable association is learned.
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Fig. 1 | dlHPC subregion involvement in food-related appetitive processing.  
a, Tractography analysis of high-resolution, normative data from 178 
participants from the HCP showing that tractography-defined LH–hippocampal 
area interconnections (that is, streamlines) converge in the dlHPC (yellow).  
b, Example traces of electrophysiological time-domain recordings from the 
dlHPC in one individual during a taste-neutral (left, cyan) and a sweet-fat (right, 
magenta) trial. The time interval displayed includes the pre-cue period (−0.5 to 
0 s), cue presentation (0–1 s), fixation cross (1–3 s), solution delivery (3–5 s), 
fixation cross (5–6 s) and a portion of the remaining duration of solution 
receipt/consummatory phase (6–7.5 s). The detailed task paradigm is described 
in Supplementary Fig. 1. c, z-score-normalized difference spectrograms 
(sweet-fat minus taste-neutral solution) in the dlHPC. The colour bar indicates 
mean z-score power difference (using pooled channels as observations) 

between the two conditions compared with a null distribution. The outlined 
clusters (left) reflect significant contiguous time–frequency voxels (P  < 0.05, 
two-sided paired nonparametric cluster-based permutation testing, 1,000 
permutations, n = 34 channels) before correction for multiple comparisons. 
The thresholded map (right) displays significant time–frequency clusters after 
correction for multiple comparisons using cluster size (Methods). d, 4–6 Hz 
mean z-score power time traces during cue (0–1 s) and after cue anticipation  
(1–3 s) of sweet-fat (magenta) and taste-neutral (cyan) solutions in the dlHPC 
(top) and non-dlHPC (bottom) hippocampal sites. 0 s and 1 s reflect the cue  
and fixation cross image presentation times, respectively. e, Hippocampal 
coverage per participant (n = 9). The red contacts indicate the contacts in 
direct contact with the dlHPC (yellow subregion). 3D volumes were rendered 
using DSI Studio (v.2022; publicly available at https://dsi-studio.labsolver.org/).

https://dsi-studio.labsolver.org/
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We next conducted a set of control analyses to further examine the 
anatomical specificity of the low-frequency power cluster to the dlHPC 
region. We found that neither non-dorsolateral hippocampal contacts 
(Fig. 1d and Extended Data Fig. 2) nor visual areas (occipital, middle 
temporal; Extended Data Fig. 3) exhibit condition specificity in the 
low-frequency power cluster. Rather, recruited condition-specific 
power in these regions varied in the spectrotemporal dynamics. The 
absence of the low-frequency power cluster in visual areas further sup-
ports the notion that this cluster is not supporting mere generic visual 
processing. In the non-dlHPC, condition specificity was in a different 
peak frequency range (around 7–12 Hz) and time interval (post-cue, 
during the fixation cross), and power in this range was higher in the 
taste-neutral condition (Extended Data Figs. 4 and 5). It is possible that 
the immediate response observed in the dlHPC reflects the learned 
cue-rewarding taste association, whereas the late non-dlHPC response 
reflects anticipation of upcoming solution delivery or reflects neural 
dynamics underlying preparation for consumption.

We next tested for the specificity of the low-frequency power cluster 
to food-related reward anticipation. Anticipation of a reward in a differ-
ent context did not elicit the condition-specific dlHPC low-frequency 
power cluster. More specifically, visual cues in a different task—the 
monetary incentive delay task paradigm17 (Supplementary Fig. 1b), 
cueing receipt of monetary gain or loss (monetary reward anticipa-
tion and monetary loss anticipation, respectively)—did not elicit 

increased power in the low-frequency cluster in the dlHPC when 
compared with zero receipt (gain versus no gain and loss versus no 
loss) (Extended Data Figs. 6 and 7). Importantly, using these two 
task paradigms and the two hippocampal subdivisions (dlHPC and 
non-dlHPC), we found a double dissociation whereby two task para-
digms make different processing demands on two dissociable sub-
networks within the human hippocampus. Specifically, contrary to 
non-dlHPC processing of a delayed increase in lower-frequency power 
for taste-neutral items in the sweet-fat incentive task paradigm, robust 
and early increases in low-frequency power for both anticipation of 
gain and of loss of monetary reward were observed (Extended Data 
Fig. 8). Together, these results speak to the anatomical specificity 
of the dlHPC as an orexigenic subnetwork node and to the specific-
ity of the low-frequency power cluster in this region to food-related  
appetitive processing.

Evoked potentials between the LH and dlHPC
Given that tractography enables only indirect assessment of inter-
connections and cannot assess the potential monosynaptic nature 
of interactions between two brain regions18, we performed trials of 
direct, single-pulse, electrical stimulation in a human participant with 
rare, if ever, recordings from both LH and sweet-fat-responsive dlHPC 
electrodes (Fig. 2a,b). Voltage deflections (or evoked potentials) are 
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Fig. 2 | Dissecting the human LH–dlHPC appetitive processing circuit using 
single-pulse electrical stimulation. a, Increased mean z-score low-frequency 
cluster power in the dlHPC (two channels; top and bottom; outlined by red and 
dark blue circles) during anticipation of sweet-fat compared with taste-neutral 
items from a participant with electrodes implanted in both the dlHPC and LH 
area (P = 0.037 (top) and P = 0.009 (bottom), unpaired one-sided permutation 
testing, 1,000 permutations). Data are mean ± s.e.m. across trials in each 
channel (n = 33 trials per condition (top), and n = 33 and n = 30 trials for the 
taste-neutral and sweet-fat conditions, respectively (bottom)). b, The 
anatomical location of the dlHPC (yellow volume) and LH-area (blue volume) 
electrodes used in the trials of single-pulse electrical stimulation. We 
parameterized single trials and quantified response durations and magnitudes 
between the LH and dlHPC. c, Electrical stimulation (stim) was delivered 

through the electrode pair (the same electrodes as in a) in the dlHPC and 
elicited evoked potentials in the recording (rec) LH electrode outlined in 
orange. The extracted shapes of the evoked potentials (middle; black line with 
green highlighting) revealed initially sharp responses characterized by a mean 
magnitude of 43.68 μV √s. SNR, signal-to-noise ratio. d,e, The LH area also 
received electrical stimulation that elicited evoked potentials in the two 
recording dlHPC sweet-fat-responsive electrodes outlined in red and dark blue 
circles (the same electrodes as in a). d, The extracted shapes of the evoked 
potentials revealed responses with a mean response magnitude of 46.78 μV √s 
in the dlHPC electrode (outlined in red). e, The other dlHPC electrode, probably 
due to its location, had a lower mean response magnitude. *P < 0.05. 3D 
volumes were rendered using DSI Studio (v.2022; publicly available at  
https://dsi-studio.labsolver.org/).

https://dsi-studio.labsolver.org/
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typically observed within 100 ms from the stimulation onset when 
recording from a region directly connected to the stimulation site19,20. 
We measured the evoked potentials (1) recorded in the LH after stimula-
tion of a pair of sweet-fat-responsive electrodes in the dlHPC (Fig. 2c 
(left)) and (2) recorded in each of the two sweet-fat-responsive elec-
trodes in the dlHPC after stimulation of the pair of electrodes that 
included the LH electrode (Fig. 2d,e (left)). The stimulation parameters 
were identical for all of the stimulation trials (bipolar, biphasic posi-
tive, 0.5 Hz, 6 mA, pulse width of 200 μs, 49 trials, 120 s total). We first 
identified that there was a significant reproducible response shape for 
each of the stimulation-recording iterations, and then parameterized 
single trials by the weight of the discovered shape and the residual noise 
(Fig. 2c–e) to calculate the duration of the significant responses and 
the mean response magnitudes—a metric that is not biased against 
longer-lasting responses (in contrast to methods using root-mean 
squared)21. After stimulation pulses to the sweet-fat-responsive dlHPC 
electrodes, we observed evoked potentials characterized by a fast, 
sharp, negative voltage deflection (~25 ms) and a slow return to the 
baseline, with a total duration of 0.88 s recorded in the single elec-
trode within the LH area (Fig. 2c; see Supplementary Fig. 2 for raw, 
common average and bipolar rereferenced from single-trial signals). 
Similar stimulation pulses encompassing the LH area electrode also 
elicited evoked potentials characterized by an early positive deflection 
followed by a negative deflection and a return to the baseline, with 
a total duration of 0.27–0.29 s recorded in the two electrodes in the 
dlHPC (Fig. 2d,e; see Supplementary Fig. 3 for raw, common average 
and bipolar rereferenced from single-trial signals).

The extracted shapes revealed significant responses in both experi-
mental directions (that is, recording in the LH with dlHPC stimulation 
and vice versa). Mean response magnitudes were similar between the 
LH electrode and one of the dlHPC electrodes (43.68 and 46.78 μV √s, 
respectively). Although we also recorded a significant response in 
the other dlHPC electrode, it had a lower magnitude (18.84 μV √s); 
however, the recordings from this electrode may have been affected 

by its location at the lateral dlHPC border, adjacent to the anterior horn 
of the lateral ventricle (Fig. 2b). This may also account, at least in part, 
for this electrode’s recordings having a lower mean signal-to-noise 
ratio (1.07) compared with the recordings from the LH electrode (1.59) 
and the first dlHPC electrode (1.99). These fast evoked potentials 
recorded in both regions after stimulation of the other are indicative 
of the presence of direct circuit-interactions between them, which may  
be bidirectional.

MCH+ projections to dlHPC
Given that MCH is an orexigenic neuropeptide produced in the LH 
area with a well-described role in appetitive processing5,10,11, we next 
tested for MCH+ projections in the dlHPC subregion. To do so, we lev-
eraged another rare opportunity afforded by a post-mortem sample 
of human tissue for the immunolabelling-enabled 3D imaging of sol-
vent cleared organs (iDISCO) procedure (Fig. 3a (left)). This technique 
enabled 3D immunostaining and visualization of axonal projections 
carrying specific peptides within tissue cuboids, whereas conven-
tional techniques would be limited in visualizing axons intersecting  
histological slices22.

First, we manually identified the location of our sample in a corre-
sponding coronal slice in the high-resolution MNI 09c template brain 
(Extended Data Fig. 9). Second, we extracted a representative dorso-
lateral section that encompassed the dlHPC subregion in the template 
brain (Fig. 3a (middle)). This section was then processed according to 
the iDISCO brain-clearing procedure (Fig. 3a (right)), with staining 
for MCH (and Alexa Fluor 647). Third, the cleared and stained section 
was again manually overlaid to the corresponding coronal slice of the 
high-resolution MNI 09c template brain with the additional overlay 
of the tractography-identified dlHPC subregion (Fig. 3b). We found 
that the dlHPC section contained MCH+ orexigenic projections visual-
ized using the brain-clearing 3D histology (Fig. 3c and Supplementary 
Video 1).

a

b c

Streamline count:  0                                                                                 5,000

Auto�uorescence MCH

dlHPC dlHPC

Fig. 3 | Dissecting the human LH–dlHPC appetitive processing circuit  
using 3D histology. a, Display of a post-mortem human sample (left) of the 
hippocampus and dlHPC section (middle) that was selected for the iDISCO 
brain-clearing (right) procedure. b, The iDISCO-cleared section (green) was 
overlaid to the group average dlHPC (yellow), defined on the basis of its higher 
number of LH streamlines. c, Staining for MCH+ and Alexa Fluor 647 is shown in 
red and autofluorescence in green within the dlHPC hotspot (high streamline 
probability with the LH area). The image was acquired using light-sheet 

microscopy (UltraMicroscope II). Scale bar, 100 μm. 3D visualization is  
shown in  Supplementary Video 1. This 3D histology experiment could not be 
repeated independently because only a single sample of the human dlHPC  
was available for the 3D histology experiments at our institution. We therefore 
approached these data as a unique opportunity for a proof of principle only, 
testing the feasibility of directly visualizing MCH+ LH projections with 3D 
histology (of which testing was lacking in humans).
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LH–dlHPC is implicated in obesity
Imaging data from a cohort of human individuals who are prone to binge 
eating (n = 34, female) were subdivided into overweight/obese (body 
mass index (BMI) ≥ 25 m2 kg−1; n = 17) and lean (BMI < 25 m2 kg−1, n = 17) 
groups. We confirmed in this cohort that the dlHPC contained the LH–
dlHPC node, previously defined by LH streamlines, by co-registering 
our normative hippocampal subregions of interest and the atlas-based 
LH to images acquired from these human participants (Fig. 4a). Similar 
to the normative cohort described above (Fig. 1a), we found signifi-
cantly higher normalized counts of LH streamlines in the left (t = −4.585, 
P = 0.00006) and right (t = −3.609, P = 0.00097) dlHPC voxels of this 
cohort compared with the hippocampal voxels outside the dlHPC (that 
is, non-dlHPC hippocampal voxels) (Fig. 4b).

We next assessed whether structural and functional connectivity 
of the LH–dlHPC circuit differ between the overweight/obese and 
lean groups. We hypothesized that, specifically in a population with 
disordered appetitive processing, which can present as loss of eating 
control (that is, in individuals who are prone to binge eating), this cir-
cuit’s dysregulation may be directly related to excess weight23,24. This 
investigation was possible here only because we could ensure that the 
comparisons were performed between groups with similar demograph-
ics and patterns of disordered eating (Supplementary Table 3). We 
found that resting-state functional connectivity (rsFC) between the 
dlHPC and LH area was significantly decreased in overweight/obese 
compared with in lean participants (t = 2.51, P = 0.018; Fig. 4c). The 
probabilistic tractography-based structural connectivity index (CI) 
between the dlHPC and the LH area was also significantly decreased 
in the obese/overweight groups compared with the lean groups in the 
left (t = 2.13, P = 0.042) but not right (t = 1.07, P = 0.295) hemispheres 

(Fig. 4d). We confirmed that these connectivity findings were specific 
to the dlHPC subregion by performing a similar analysis between the 
non-dlHPC hippocampal voxels and the LH area. No differences in  
LH–non-dlHPC or LH–whole-hippocampus structural CI nor rsFC were 
observed between the overweight/obese and lean groups (Extended 
Data Fig. 10 and Supplementary Table 4 (also includes rsFC between 
LH and control regions)).

As we were ultimately interested in the overall multivariate pattern 
of these functional and structural circuit alterations, we fit a multi-
variate logistic regression model that included neuroimaging as well 
as behavioural variables (Methods; the variables are listed in Supple-
mentary Table 3) to predict whether a participant belongs to the over-
weight/obese or lean group. Using backwards elimination, we identified  
LH–dlHPC rsFC (β = −9.886, P = 0.044) and LH–left dlHPC CI (β = −14.676, 
P = 0.037) as the only independent predictors of obesity, with a variance 
inflation factor (VIF) of 1.32 (VIF < 2.5 suggests negligible collinear-
ity between variables). Such findings further implicate this circuit in 
obesity involving dysregulated eating behaviour.

Discussion
As a higher-order processing centre involved in integrating external 
and internal stimuli, the hippocampus is uniquely positioned as an 
important node for orexigenic appetitive processing1,2,25. Here we char-
acterized the orexigenic subnetwork within the human hippocampus. 
Structurally, LH streamlines converge in the dorsolateral aspect of the 
hippocampus (that is, the dlHPC); interconnections between the LH and 
dlHPC were further validated by single-pulse stimulation of the dlHPC 
resulting in sharp and fast voltage deflections in the LH area. This hip-
pocampal subregion contains MCH+ projections that are presumably 
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Fig. 4 | The dlHPC–LH circuit is associated with the obese state involving 
dysregulated eating behaviour in humans. a, Regions of interest co-registered 
to native space of an exemplary individual in the binge-eating cohort: dlHPC 
(yellow), non-dlHPC (red) and LH (blue; adapted from the CIT168 Subcortical In 
Vivo Probabilistic Atlas). b, Analysis of the relevance of hippocampal subregions 
in the binge-eating cohort. Significantly higher normalized streamline counts 
were observed between the LH and left (L) dlHPC (t = −4.585, P = 0.00006, 
two-sided t-test) and right (R) dlHPC (t = −3.609, P = 0.00097, two-sided t-test) 
compared with the non-dlHPC in the overall cohort. n = 34 participants, with 2 
subregions analysed in each hemisphere. For the remaining analyses, the overall 
cohort was divided into two groups: lean (n = 17) and overweight/obese (n = 17). 

c, rsFC between the dlHPC and LH was decreased in the overweight/obese group 
compared with the lean group (t = 2.51, P = 0.018, two-sided t-test). d, Structural 
CI between the left dlHPC and LH was significantly decreased (t = 2.13, P = 0.042, 
two-sided t-test) in the overweight/obese group compared with the lean group. 
No significant differences (t = 1.07, P = 0.295, two-sided t-test) in the structural  
CI between the right dlHPC and LH were found (see Supplementary Fig. 4 for 
individual participant datapoints for b–d). NS, not significant. *P < 0.05; 
***P < 0.001. For the box plots in b and d, the centre line shows the median,  
the box limits show the 25th to 75th percentiles and the whiskers show the 
minimum to maximum values.
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derived from the LH soma5. Functionally, the dlHPC exhibits specific 
field potential responses during anticipation of a high-caloric, sweet-fat 
solution. Finally, the LH–dlHPC circuit is perturbed in patients with 
obesity involving dysregulated eating patterns.

The interrogation of a neural circuit underlying appetitive process-
ing in living humans poses unique challenges, and has mostly relied on 
functional MRI (fMRI) and non-invasive electrophysiology26,27. How-
ever, for over two decades, in vivo structural investigations of human 
brain circuits have been made possible by diffusion-MRI-based trac-
tography28. The key limitation of tractography is that it may be prone 
to false positives and negatives, and it may also not allow distinction 
between afferent and efferent projections29. Nonetheless, tractogra-
phy findings can be supported by direct interrogation of circuits with  
(1) stimulation-induced evoked potentials30 and (2) post-mortem brain 
clearing 3D histology18. Here we used high-resolution diffusion MRI to 
define the hippocampal subregion in which LH streamlines are more 
densely populated (that is, the dlHPC). Thereafter, we also applied  
the two aforementioned modalities uniquely in parallel to further probe 
and characterize LH interconnections within the dlHPC. Notably, the 
hereby defined human dlHPC subregion includes both posterior and 
anterior aspects of the human hippocampus; we therefore hypothesize 
that it is not analogous to the classical rodent subdivision of the dorsal 
and ventral hippocampus31.

Stimulation of either the dlHPC or the LH caused reproducible fast 
and sharp voltage deflections in the other region, indicating the pres-
ence of direct connections between them19. As our circuit hypotheses 
were driven by a wealth of previous literature in animal studies about 
a predefined interaction between the LH and hippocampus, we used 
a hypothesis-driven, preselected paradigm to study the dynamics  
between the human LH and dlHPC20. We used a technique that  
enables quantifications of the magnitude and duration of evoked poten-
tials without a pre-set assumption of their form and shape in areas in 
which relative tissue to electrode positions and type of axonal projections 
are not yet well described21. Similar response magnitudes were recorded 
in the LH after dlHPC stimulation and vice versa. Importantly, responses 
to electrical stimulation do not necessarily follow the directions  
of axonal projections, as classically seen in the antidromic evoked 
potential stimulation recorded in prefrontal cortex after stimulation 
of the subthalamic nucleus, which reflects the hyperdirect pathway 
from the prefrontal cortex to the subthalamic nucleus32,33. Response 
shapes differed, including their latency and total duration, depending 
on which node received stimulation or recordings, potentially account-
ing for the inclusion of later changes in local field potentials recorded 
in the LH, as well as cytoarchitectonic differences between the two 
regions and the position of the electrode with regard to the tissue20.

In a post-mortem hippocampal specimen, we then used iDISCO 
3D histology with immunostaining for MCH—a neuropeptide that is 
involved in feeding and primarily synthesized in the LH and its imme-
diate adjacencies5,10,11—to further assess the presence of and charac-
terize orexigenic LH projections within the dlHPC subregion. Given 
that we had only a single sample of the human dlHPC available for the 
3D histology experiments, preventing the use of multiple stains in 
the same sample, we approached these data as a unique opportunity 
for a proof of principle, testing the feasibility of directly visualizing 
MCH+ LH projections with 3D histology (testing of which was lacking 
in humans). Our results provided additional evidence for the existence 
of such appetitive projections in the human dlHPC. Before 3D histol-
ogy and immunolabelling, we were able to test the performance of the 
anti-MCH antibody, as described in the original iDISCO paper22, with 
and without the secondary antibodies. While rigorous quantifications 
of the visualized MCH+ staining would require multiple samples with 
comparable dimensions (and antibody permeability), the presented 
approach has the potential to inform at least one directionality of the 
identified LH–dlHPC subnetwork. These inferences were possible here 
due to previous understanding of the LH origin of MCH+ projections 

that enabled one assessment of directionality, which is rarely possible 
in human circuit-based investigations. These histologically defined 
LH projections within the dlHPC subregion shed light on the direc-
tion of the previously described evoked potentials, with the responses 
recorded in the LH area (after dlHPC stimulation) probably represent-
ing, at least in part, antidromic effects of stimulating these projections, 
as previously described in different subnetworks32. Importantly, the 
projections from the LH to the dlHPC uncovered by the 3D histology 
should not be regarded as the only direction of connections between 
these two regions. In fact, the opposite pathway has also been described 
in rodents, with a robust projection from the hippocampus to the LH 
also involved in the control of feeding6,34.

Comparable to our work, the sweet-fat paradigm used here has been 
applied to fMRI studies that showed increased hippocampal activation 
in response to sweet-fat stimuli compared with taste-neutral stimuli35. 
Moreover, hippocampal activation in response to food stimuli has 
been reported to be decreased after intranasal insulin administra-
tion36. Although these studies place the human hippocampus at the 
intersection of energy homeostasis and appetitive processing, fMRI 
and non-invasive electrophysiology lack the temporal resolution and 
spatial resolution, respectively, for uncovering differential hippocam-
pal subregion involvement. Moreover, reports on hippocampal con-
nectivity underlying dysregulated eating and obesity are lacking, and 
conspicuously absent are studies examining hypothalamic inputs in 
humans. Individuals undergoing brain mapping with intracranial 
electrophysiology provide a unique opportunity to overcome these 
limitations in the interrogation of specific regions of interest during 
controlled assays such as a food-incentive paradigm12.

Intracranial electrophysiology of this dlHPC subregion revealed a 
condition-specific power increase in the low-frequency cluster. The 
power in this range did not generalize to other brain areas nor other 
visual reward cues in the non-feeding domain. This frequency range 
overlaps with theta ranges, prominent rhythms in both the rodent 
and human hippocampus ascribed to mnemonic processes, includ-
ing memory encoding and retrieval37,38. Our finding of increased 
dlHPC power as a function of trial number for the sweet-fat condition  
suggests that power in this range may support the encoding of the cue’s 
appetitive value. Lower frequencies, including theta, have also been 
observed in neocortical areas and have been linked to both mnemonic 
and cognitive control processes39. The ubiquitous presence of this 
rhythm across areas and behavioural contexts led to a hypothesis of 
its more general role, such as mediating information transfer between 
the recruited regions and at temporal scales associated with a given 
behavioural context40. The hippocampus is a higher-order node and, 
in the sweet-fat paradigm, is probably integrating multimodal infor-
mation coming from the LH and neocortical areas; this low-frequency 
profile may mediate information transfer between the dlHPC and LH 
to facilitate combining cue information with appetitive input from 
the LH. Owing to the limited availability of patients with intracranial 
recordings for research tasks and limited time for such experiments, 
we were not able to directly assess the potential effect of satiety levels 
on these recordings beyond examining the task-period-related changes 
in energy state. Our report of a low-frequency power increase in this 
time window is consistent with power increase in the same frequency 
range in mice exposed to olfactory sweet-fat cues, reflecting a degree 
of generality of this signal to appetitive food anticipation irrespective 
of the sensory modality of the cue41.

Previous studies have also implicated the human hippocampus and 
hypothalamus in dysregulated eating and obesity. A recent systematic 
review of neural correlates of dysregulated eating associated with 
obesity risk in youth identified that eating in the absence of hunger 
was associated with hippocampal activity42. Hippocampal activation 
in response to food stimuli increased in children with obesity and dys-
regulated eating (for example, eating in dissonance with homeostatic 
requirements)43. Another study found that participants exposed to 



Nature  |  Vol 621  |  14 September 2023  |  387

appealing food with a prior directive to suppress the desire for food 
significantly decreased activation in the hippocampus, among other 
regions involved in emotional regulation, conditioning and motiva-
tion44. Other studies reported a decrease in hippocampal activation 
in response to food images that predicts post-task levels of chocolate 
consumption, and abnormal hippocampal activation during reward 
processing in individuals with dysregulated eating behaviours45,46. 
In addition to the functional and structural neuroimaging studies, 
hippocampal concentrations of metabolites (such as creatine and 
phosphocreatine) have also been reported to be increased in individu-
als who are overweight or obese, potentially indicating BMI-related 
alterations in inflammatory cytokines and adipokines within the hip-
pocampus47. With regard to the hypothalamus, previous research 
established an association between MCH overexpression and  
obesity in animal models10, and neuroimaging work reported increased 
hypothalamic activation during a task requiring inhibitory control in 
individuals with dysregulated eating48. Only one study has reported 
abnormal rsFC between the LH and multiple brain regions in adoles-
cents with excessive weight49; while the hippocampus was identified 
as functionally connected to the LH, this subnetwork’s involvement in 
obesity was not reported. However, our finding of this link is probably 
due to the identification of the dlHPC as the subregion of interest, 
as findings of decreased LH–hippocampal connectivity in the obese 
state were not observed when hippocampal voxels outside the dlHPC  
were included.

The present investigation provides evidence supporting decreased 
rsFC and structural connectivity between LH and dlHPC in female indi-
viduals who are obese or overweight. These findings emerged only 
after the definition of the dlHPC as the subregion of interest, as our two 
cohorts showed no differences in connectivity between the non-dlHPC 
(or whole hippocampal) voxels and the LH. Moreover, the finding that 
functional and structural connectivity measures were significant pre-
dictors of overweight/obese versus lean group assignments supports 
the notion that the LH–dlHPC appetitive processing node is indeed 
altered in the obese state. Putting our findings in the context of the 
reports discussed above, structural and functional abnormalities 
involving the MCH+ LH–dlHPC node uncovered here may predispose 
individuals struggling with dysregulated eating behaviour to obe-
sity. Our analyses with control regions indicated some specificity of 
the decreased LH–dlHPC connectivity in overweight/obese group, as 
opposed to reflecting a general effect of adiposity. Notwithstanding, 
our study findings of decreased LH–dlHPC connectivity in individu-
als who are overweight/obese in the context of binge eating should 
be interpreted with caution. The generalizability of these findings 
outside the context of disordered appetitive processing could not be 
assessed in the study cohort. It should also not be inferred from these 
results that this appetitive processing circuit is the only part of a large 
brain network associated with obesity. This study adds instead to the 
pre-existing animal literature with human findings implicating the 
LH–dlHPC circuit in appetitive processing.

There are a few noteworthy considerations regarding this study. First, 
we did not include male individuals or people struggling with other 
forms of dysregulated eating in the connectivity analyses. We chose 
to use a homogeneous female-only binge-eating cohort to ensure that 
the findings would not be skewed by sex or behavioural differences. 
However, our electrophysiological analysis is not sex specific. Second, 
directionality cannot be inferred from our cortico-subcortical evoked 
potential experiment, as the observed LH signal can be explained by 
either retrograde activity along the LH axons, or anterograde activ-
ity along the dlHPC axons. Third, MCH+ projections may be coming 
from either the LH or its immediately adjacent structures, such as 
the zona incerta5. Fourth, we had only a single case with simultane-
ous LH and dlHPC intracranial electrodes for the experiment with 
cortico-subcortical evoked potentials and a single sample for the 3D 
histology; however, together, these complimentary methods offered us 

a unique opportunity to leverage and cross-validate these approaches 
to examine a specific human orexigenic subnetwork. Finally, note that 
intracranial electrophysiological data are obtained from patients with 
epilepsy. Epilepsy may alter LH–dlHPC dynamics; however, previous 
research shows that normal physiological responses are recorded 
in patients with epilepsy outside of epileptic electrophysiological 
events50. Our analysis pipeline follows previous efforts to detect these 
events and eliminates any trial with at least one event. As epilepsy  
pathophysiology and foci vary from individual to individual, our group 
analyses limit the degree to which varied pathological dynamics are 
preserved at the group level. This suggests that our findings are useful 
for inferences about dlHPC–LH dynamics, but future validation regard-
ing the generalizability of these findings to a non-epilepsy cohort is 
necessary.

Collectively, the convergence of modalities has elucidated a circuit 
that is perturbed in a disease-relevant state, furthering our under-
standing of how specific node interactions within the human brain are 
involved in obesity and related eating disorders.
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Methods

MRI data and preprocessing
MRI acquisition parameters are summarized in Supplementary Table 2. 
We included MRI data from two different cohorts: (1) a normative dif-
fusion MRI dataset from 178 unrelated individuals from the HCP who 
underwent a ultrahigh-resolution acquisition on the Magnetom 7T 
MRI scanner (Siemens Medical Systems) was obtained from the pub-
licly available S1200 WashU-Minn-Ox HCP dataset51–53; (2) functional 
resting-state, and diffusion MRI data from 37 female individuals prone 
to binge eating recruited by the Stanford Eating Disorders Program 
on a 3T MRI scanner (Discovery MR750, GE Healthcare). Imaging data 
were analysed using publicly available methods and custom scripts in 
Python v.3.6, as described below.

Resting-state fMRI scans from the binge-eating-prone cohort were 
preprocessed using fMRIPrep (v.1.2.3)54. In brief, the preprocessing of 
the functional image involved skull-stripping, co-registration to the T1 
reference image, and head motion and susceptibility distortion correc-
tions. After removal of non-steady state volumes and spatial smoothing 
with a 6 mm FWHM isotropic Gaussian kernel, ICA-AROMA was used to 
identify motion-related noise components in the BOLD signal55. Frame-
wise displacement (FD) and root-mean squared variance over voxels of 
the temporal derivative of time courses (DVARS) were calculated56,57. 
Three participants were excluded due to excessive movement as meas-
ured by (1) mean FD > 0.2mm; (2) more than 20% of FD over 0.2 mm; 
or (3) any FD > 5 mm (ref. 58). Global signals were extracted within the 
cerebrospinal fluid, white matter, grey matter and whole-brain masks. 
XCP Engine v.1.0 was used to perform denoising of the preprocessed 
BOLD output from fMRIPrep, using the estimated confound parame-
ters58,59. This included demeaning and removal of any linear or quadratic 
trends and temporal filtering using a first-order Butterworth bandpass 
filter (0.01–0.08 Hz). These preliminary preprocessing steps were then 
followed by confound regression of ICA-AROMA noise components, 
together with mean white matter, cerebrospinal fluid and global signal 
regressors. All regressors were band-pass filtered to retain the same 
frequency range as the data to avoid frequency-dependent mismatch59. 
Whereas preprocessing was performed on the diffusion MRI data from 
the binge-eating-prone cohort to prepare the images for probabilistic 
tractography using the FSL suite60,61, the normative HCP diffusion MRI 
data had already been preprocessed (with the minimal preprocessing 
pipeline). The diffusion-weighted images were corrected for motion 
and geometric distortions using the topup and eddy functions, simi-
lar to that applied in the HCP’s preprocessing pipeline. For each par-
ticipant, diffusion and T1-weighted images were co-registered using 
boundary-based registration.

Probabilistic tractography
Probabilistic tractography was used to evaluate the interconnections 
between the LH and hippocampus. The LH mask was defined on the 
standard T1 MNI152 09c template adapted from CIT168 Subcortical In 
Vivo Probabilistic Atlas62, whereas the hippocampus mask was defined 
using the Harvard–Oxford Brain Atlas. Co-registration was performed 
using Advanced Normalization Tools (ANTs, v.2.1.0), and consisted of 
two successive steps of linear and nonlinear registration between the 
individual’s brain and the MNI brain. In a third step, the MNI-defined 
regions of interest were registered to the individual’s space. FSL’s Bayes-
ian estimation of diffusion parameters obtained using sampling tech-
niques (BEDPOSTX) was used to conduct Monte Carlo sampling of 
probability distribution of diffusion parameters at each voxel, account-
ing for up to three crossing fibre directions within a voxel63. Fibre track-
ing was performed using FSL’s Probtrackx2, using distance correction 
and each hippocampal voxel as a seed and the LH as a target64. A total 
of 5,000 seed points was used to generate streamlines from each seed 
voxel, and only the streamlines that reached the target were retained 
for further analysis. The results of Probtrackx are summarized in a 

map of ‘streamline probability’ and ‘waytotal’, representing the prob-
ability for each seed voxel to reach the target and the total number of 
streamlines from a given seed that reached the target, respectively. The 
strength of the connections between seed and target was calculated 
as a tractography-CI, as defined in a previous study using the folllow-
ing formula: log[waytotal]/log[5,000 × Vseed] (ref. 65). The waytotal 
resulting from the tractography was log-transformed and divided by 
the log-transformed product of the generated sample streamlines in 
each seed voxel (5,000) and the number of voxels in the respective 
seed mask (Vseed). The log-transformation increased the likelihood 
of reaching normality, which was tested using the Shapiro–Wilk test66.

Hippocampal segmentation
Tractography was used to generate a probabilistic map based on each 
hippocampal voxel’s streamline probability to the LH for all 178 partici-
pants from the normative HCP dataset. Each participants’ streamline 
probability map to the LH was transformed to standard MNI 09c space 
so that they could be averaged and concatenated into a normative 
weighted average group map of streamline probability between the hip-
pocampal area and the LH across the 178 HCP individuals. We performed 
this analysis to define the hippocampal subregions in the normative 
HCP data and then applied these subregions to the binge-eating-prone 
cohort. We then used k-means to segment group average hippocampus 
streamline probability maps. This hypothesis-free method uses suc-
cessive iterations to assign each voxel to one of two clusters without 
the application of external spatial constraints. For the case of large 
intervoxel similarities in streamline count, the algorithm does not 
identify two distinct clusters. Resulting clusters represented normative 
hippocampal subregions based on its connectivity to the LH in standard 
MNI 09c space. Finally, we co-registered the normative clusters to the 
MRI images from our participants implanted with depth electrodes, as 
well as from the members of the binge-eating cohort.

Sweet-fat incentive and monetary incentive delay paradigms
Consent to participate in this study was obtained according to the 
Declaration of Helsinki and approved by the institutional ethical com-
mittee. The inclusion criteria for this study were the presence of at least 
one hippocampal depth electrode. Participants (n = 9; Supplementary 
Table 1) underwent surgical implantation of depth electrodes for neu-
rosurgical epilepsy monitoring. The location of electrode implantation 
was determined solely based on clinical needs and therefore varied 
across participants. All of the patients provided individual informed 
consent (including the publication of de-identified demographics 
and clinical data) as approved by the Stanford University Institutional 
Review Board (IRB-11354). Of the 9 participants, 8 participants also 
had electrodes in regions specifically included in control analyses: 8 
participants with electrode in the middle temporal gyrus and 2 partici-
pants with electrodes in the occipital lobe. Data acquisition procedures 
were previously described12. In brief, neural activity was sampled at 
1,024 Hz from AdTech electrodes while the participants engaged in 
two different tasks—the sweet-fat incentive and monetary incentive 
delay computer-based paradigms (Supplementary Fig. 1). The sweet-fat 
incentive paradigm, also known as the Milkshake task67, was originally 
an fMRI task that we previously adapted for intracranial electrographic 
recordings of cued anticipation and consumption of a sweet-fat and a 
taste-neutral solution12,68. Each trial in this paradigm began with a 2 s 
fixation cross presented on a computer screen—this period is referred 
to as the prestimulus period. This was followed by a 1 s presentation of 
an image of a glass of either water or of milkshake, which served as a cue 
for the solution to be subsequently delivered through a mouthpiece 
to the participant for consumption. Before the solution was delivered, 
a 2 s image of a fixation cross was viewed. The 1 s presentation of the 
solution to be delivered and this 2 s fixation cross period are referred 
to as an anticipatory period (3 s). After the anticipatory period is a 5 s 
receipt/consummatory period, consisting of a 3 s solution-delivery 
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period followed by a 2 s consumption of solution period. Sweet-fat and 
taste-neutral trials were presented in a randomized order, with a total of 
80 to 100 trials evenly split between the sweet-fat and taste-neutral con-
ditions. After task completion, the participants were asked to rate on a 
Likert scale from 1 to 10 the quality of the sweet-fat solution (Likert scale, 
1–10) and which solution (sweet-fat versus taste-neutral) they preferred. 
The second task, the monetary incentive delay task paradigm, was also 
originally an fMRI task17 that we adapted for intracranial electrographic 
recordings of cued anticipation and receipt of monetary reward. Each 
trial in this paradigm is a total duration of 10 s. Trials began with a 2 s 
fixation cross presented onto a computer screen (prestimulus period). 
This was followed by a 2 s presentation of an image cueing the outcome 
of a subsequent button press as either monetary gain (+US$5, +US$1), 
absence of monetary gain (+US$0, referred to as zero-gain), monetary 
loss (−US$5, −US$1), or absence of monetary loss (−US$0, referred to 
as zero-loss). The cue is then followed by a 2 s display of a fixation cross 
image. The target image is presented momentarily within a 2 s interval 
prompting the participant’s button press. After the button press, there 
is a 2 s feedback presentation indicating gain, loss or absence of gain 
or loss. Gain and loss trials were presented in a randomized order and 
evenly split among all of the trial conditions. The total number of trials 
varied from 60 to 100 trials based on time constraints.

Electrode localization
Presurgical MRI scan was co-registered to post-surgical computed 
tomography scan for electrode visualization and localization as 
described previously50. Locations of depth electrodes within the medial 
temporal lobe were then examined by one rater with expertise in medial 
temporal lobe anatomy and neuroimaging (D.A.N.B.). Electrodes in 
direct contact with the hippocampal area were selected for further 
evaluation. We next co-registered the normative hippocampal clusters 
(that is, dlHPC and non-dlHPC) that we had previously defined in the 
standard MNI09c template brain to each participant’s native space 
(Fig. 1e). All hippocampal electrodes (n = 54) were labelled accord-
ing to whether they were in direct contact with dlHPC or not (that is, 
non-dlHPC). This localization was performed before the time–fre-
quency analysis.

Task data preprocessing and analyses
Electrophysiological data were downsampled to 1,000 Hz, notch fil-
tered for 60 Hz and 2nd–3rd harmonics, and Laplacian rereferenced in 
FieldTrip as previously described12,68. Artifact timepoints were defined 
as voltage values greater or less than the mean signal of all 10 s trials 
concatenated, recorded from the same channel plus four multiples of its 
s.d. Any trial with at least one detected artifact timepoint was excluded. 
Time–frequency analysis was implemented using the wavelet toolbox 
in MATLAB. There are three input parameters: (1) minimum frequency, 
set to 3; (2) maximum frequency, set to 250; and (3) NumVoices, set to 
32. The toolbox generates ‘scales’ on the basis of the desired frequency 
range (defined by minimum to maximum frequencies), which then get 
mapped into frequencies. The trial vector, scales vector and ‘morl’ are 
inputs to the cwtft function in MATLAB, which generates the wavelets 
and power extraction. Wavelets were first tested on ground-truth data 
with known spectral properties before use on experimental data.

Trial instantaneous power values were normalized to power at the 
same frequency and channel during the 1 s prestimulus period across 
all trials in the same condition (condition-specific prestimulus normali-
zation). The prestimulus duration of any trial with at least 1 detected 
artifact timepoint was excluded from the normalizing distribution 
(see the previous section). Condition-specific prestimulus normali-
zation was used to account for possible differences in baseline power  
before stimulus presentation. The results were reproduced using an 
alternative normalization method whereby power values were normal-
ized relative to the distribution of power in the same frequency and 
channel, during the entire recording.

Spectral analyses were primarily focused on the anticipation period 
(1 s cue, and 2 s post-cue fixation for the sweet-fat incentive paradigm 
or 2 s cue and 2 s post-cue fixation for the monetary incentive delay 
paradigm). Statistical differences in time–frequency power between 
the conditions were calculated using cluster-based permutation 
testing69. In brief, this involved calculating a t-statistic in each time–
frequency voxel, between the two conditions (sweet fat versus taste 
neutral), thereby generating the observed t-map. The distribution 
for each voxel was generated by pooling the time–frequency maps 
from all channels and individuals (trials were averaged to generate a 
single map per channel). The observed t-map was then compared to a 
null distribution (shuffled condition labels) of t-maps generated over 
1,000 paired permutations. A P value for each voxel was obtained by 
comparing the observed to the null t-value at the same time–frequency 
voxel, thereby generating a P-map. Clusters of contiguous voxels with 
a P < .05 were identified and compared to the null-distribution cluster 
size. Observed clusters with sizes larger than the 95th percentile of 
those from the null distribution were considered to be significant after 
correction for multiple comparisons.

Evoked potentials
As previously described, we performed single-pulse stimulations at rest 
using an intracranial electrical waveform generator and switchbox30,70 
(MS-120BK-EEG and PE-210AK, Nihon Kohden). Electrical stimulation 
was delivered through adjacent pairs of electrodes in biphasic pulses 
(6 mA; 200 μs per phase, 49 trials) at a frequency of 0.5 Hz for a total 
of 120 s. We measured electrical potentials in response to stimulation 
with a video EEG monitoring system using a sampling rate of 2,000 Hz 
(version WEE-1200, Nihon Kohden). We analysed the single-pulse stimu-
lation data using custom scripts in MATLAB v.2020b. We first applied 
a high-pass butterworth filter (1 Hz) to exclude slow varying effects 
and segmented evoked responses time series from recording chan-
nels were into 2,500 ms epochs time-locked to stimulus onset (500 ms 
prestimulus and 2,000 ms post-stimulus). We then rereferenced the 
data to the common average signal, excluding stimulated channels, 
channels with artifacts and channels with large, evoked responses, as 
previously described20. Finally, to exclude potential effects of prestimu-
lus signal fluctuations, we applied a baseline correction by subtract-
ing the average signal between 200 ms and 20 ms before the stimulus 
onset. To ensure that these preprocessing steps did not introduce 
a bias, we also provided line traces of bipolar rereferenced and the 
single-trial raw signal from the recording electrodes (Supplementary 
Figs. 2 and 3). To quantify the observed evoked potentials, we used the 
publicly available canonical response parameterization method and 
calculated the duration of the significant responses and mean response 
magnitudes, which is a metric that is not biased against longer-lasting 
responses (unlike methods using root-mean squared)21,71. This method 
automatically processes a set of responses recorded after repeated 
trials of stimulation and extracts a canonical structure in the response 
(if one exists), without a pre-set assumption of the response shape, to 
examining structural similarity between trials to (1) identify whether 
there is a significant reproducible response shape (and over what  
time interval); (2) characterize what this shape is; and (3) parameterize 
single trials by the weight of the discovered shape and the residual after 
the discovered shape has been regressed out. The output of this method 
consists of the magnitude, duration and significance of response to 
stimulation between pairs of brain sites.

Human hippocampal sample
In accordance with the local Stanford University Institutional Review 
Board, a post-mortem sample of the left hippocampal area (Fig. 3a) 
was obtained from a whole brain with no known pathologies that had 
been extracted 24 h after death and placed in 10% formalin for 1 day. 
The sample was perfused and stored in PFA 4%. For the brain-clearing 
procedure, we extracted a representative dorsolateral hippocampal 



section and transferred the sample to 1 M phosphate-buffered saline 
(PBS). The sample was stored at 4 °C until the iDISCO protocol was 
performed.

Antibody validation protocol
A validation protocol was performed to be sure that the anti-MCH 
(Phoenix Pharmaceuticals, H070-47, 01629-10) was compatible with 
the reagents used in the iDISCO protocol22. Slices of human hippocam-
pal tissue (outside the dlHPC cuboid) were obtained on a Vibratome 
at 60 µM in 1 M PBS solution. The free-floating sections were perme-
abilized for 3 h with methanol at room temperature and after were 
rinsed twice with PBS for 20 min and then rinsed with PBS with 2% Triton 
X-100. The sections were then incubated with permeabilization solu-
tion (PBS with 0.2% Triton X-100) during 30 min and blocking solution 
(PBS with 0.2% Triton X-100, 10% DMSO and 6% donkey serum) for 1 h. 
The anti-MCH antibody was incubated 1:500 in PTwH (PBS with 0.2% 
Tween-20, 1% heparin (10 mg ml−1), 0.2% sodium azide) overnight at 
−4 °C. The samples were rinsed three times for 5 min and the secondary 
antibody (Alexa Fluor Plus 647 anti-rabbit; Thermo Fisher Scientific, 
A32795, TF271041) was incubated 1:250 in PTwH and 3% donkey serum 
and 0.2% sodium azide during 1 h at room temperature, covered from 
the light. Finally, the samples were rinsed in PTwH three times for 5 min 
and the slices were mounted with DAPI (Vectashiels-VECTOR). Images 
were acquired using confocal microscopy (data not shown).

iDISCO brain-clearing 3D histology
After antibody validation, we selected a representative dorsolateral 
section for the iDISCO protocol to confirm our hippocampal area seg-
mentation (Fig. 3a,b). The section was approximately 1.0 × 0.8 × 0.4 cm 
and was pretreated with methanol according to the iDISCO protocol22 
using a modified immunostaining protocol. The sample was rinsed 
twice with PBS with 2% Triton X-100 for 1 h. We incubated the sample 
in permeabilization solution (PBS with 0.2% Triton X-100, for 30 min) 
and blocking solution (PBS with 0.2% Triton X-100, 10% DMSO and 6% 
donkey serum) for 1 h. The sample was incubated with 1:500 anti-MCH 
antibodies in PTwH (PBS, 0.2% Tween-20, 1% heparin 10 mg ml−1, 0.2% 
sodium azide) for 10 days, nutating at 37 °C. After 10 days, the samples 
were rinsed three times for 5 min and then rinsed again every few hours 
and left nutating at room temperature overnight. The next day, the 
sample was incubated in the secondary antibody, donkey anti-rabbit 
Alexa Fluor 647 Plus (Thermo Fisher Scientific, A32795), 1:250 in PTwH 
and 3% donkey serum and 0.2% sodium azide at 37 °C, nutating for 10 
days, covered from the light. After secondary incubation, the sample 
was again rinsed in PTwH for 2 days, and the iDISCO clearing protocol 
was followed (https://idisco.info/idisco-protocol/update-history/).

Histological assessment of lateral hypothalamic connections in 
the dlHPC
The iDISCO brain-clearing 3D histology results were used to confirm 
the hippocampal area segmentation. The anti-MCH antibody was used 
to identify orexigenic projections within our hippocampal sample. The 
sample was imaged using a light-sheet microscope (UltraMicroscope 
II, Miltenyi BioTec). We used the background subtraction tool in Imaris 
to remove the faint auto-fluorescence signal in non-stained tissue tra-
ditionally present in the red (647) channel of iDISCO-cleared samples. 
We assessed whether our sample from the dorsolateral hippocampal 
subregion, defined on the basis of the higher number of probabilistic 
tractography streamlines, contained projections expressing MCH, an 
orexigenic neuropeptide primarily produced in the LH area. We first 
manually identified the location of our whole sample in a corresponding 
coronal slice in the high-resolution MNI 09c template brain (Extended 
Data Fig. 9) and then extracted a representative dorsolateral section 
that overlapped with the dlHPC (Fig. 3a). After immunolabelling and 
clearing, the final MCH-stained sample was again manually overlaid to 
the corresponding coronal slice in the high-resolution MNI template 

brain and the tractography-based hippocampal probability map of LH 
area streamlines (Fig. 3b).

Demographics, clinical and behavioural data of the 
binge-eating-prone cohorts
Participant consent was obtained according to the Declaration of  
Helsinki and approved by the Stanford University Institutional Review 
Board (IRB-35204). We analysed the available clinical and behavioural 
data from the 34 female individuals who were prone to binge eating 
(that is, all those included in imaging analyses), defined by at least 
one weekly episode of eating large amounts of food in short periods 
accompanied by the feeling of loss of control eating over the previ-
ous 6 months (binge-eating-prone cohort; mean age = 26 ± 5.6 years; 
BMI = 27.9 ± 8.5; binge frequency = 2.7 ± 1.4 episodes per week)72. The 
number of binge-eating episodes per week was assessed using the 
Eating Disorder Examination, a standardized diagnostic interview73. 
The Beck Depression Inventory (BDI) and the Beck Anxiety Inventory 
(BAI) were used to screen for depression and anxiety, respectively74,75. 
The Difficulties in Emotion Regulation Scale was used to assess impair-
ment in emotion regulation76. The binge-eating cohort was divided 
into two subgroups: (1) lean (n = 17): BMI < 25 (referred to as the lean 
group); (2) overweight/obese (n = 17): BMI > 25 (referred to as obese/
overweight group).

rsFC analysis
rsRC analysis was performed on the binge-eating-prone cohort’s pre-
processed resting-state fMRI data using DPABI/DPARSF v.4.3, which is 
based on Statistical Parametric Mapping (SPM, v.12, https://www.fil.ion.
ucl.ac.uk/spm)77. A seed-based approach was performed to examine 
the rsFC in the 34 female individuals prone to binge eating included 
in imaging analyses by calculating the rsFC between the LH mask as 
defined above and each tractography-identified hippocampal subre-
gion. Functional connectivity values were extracted for all participants 
and used in further correlational analyses.

Statistical analyses
Statistical analyses were performed using the Rstudio v.1.2.5042 
(Rstudio). Given the sensitivity of metrics derived from resting-state 
fMRI and diffusion MRI proneness to numerical distortions related 
to data acquisition or analytical pipeline, we used the Tukey method 
to remove outliers for each connectivity metric. After checking for 
normality, we then used the Student’s t-test to compare rsFC as well 
as tractography-CI between the hippocampal subregions and LH in 
the overweight/obese and lean groups. One outlier was identified 
and removed from the obese binge-eating group and two outliers 
were identified and removed from the lean group in both the rsFC and 
structural CI analyses in Fig. 4c and 4d (left), respectively. Moreover, 
we identified and removed one outlier from the lean group in the CI 
analysis in Fig. 4d (right). Mann–Whitney U-tests were used to compare 
the corrected number of streamlines between the LH and hippocampal 
subregions in the binge-eating-prone cohort. To assess potential effect 
of confounders in the identified connectivity differences between the 
obese and lean group, we fit a multivariate logistic regression model 
to predict whether a participant belongs to the overweight/obese or 
lean group, including the available demographic and behavioural 
variables in addition to the LH–dlHPC connectivity measurements. 
The comprehensive list of variables included: age, depression (BDI), 
anxiety (BAI), binge-eating frequency, restrained eating, emotional 
eating and externally driven eating scores (from DEBQ), LH–dlHPC–
LH rsFC, LH–non-dlHPC rsFC, LH–dlHPC structural connectivity and 
LH–non-dlHPC structural connectivity. We then used backwards 
elimination to identify which combination of variables provided the 
highest predictive power with the lowest total number of explana-
tory variables to avoid over-fitting (Akaike information criterion). 
Finally, a VIF was calculated to assess potential correlations between 
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explanatory variables, with a VIF < 2.5 suggesting negligible collin-
earity between variables78. P < 0.05 was considered to be statistically 
significant for all tests.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The Human Connectome Project 7T S1200 WashU-Minn-Ox HCP data-
set is publicly available online (http://db.humanconnectome.org/). 
More detailed anonymized data supporting any other findings of this 
study are available from the corresponding author on reasonable 
request as the institutions involved in this study may require Data Use 
Agreements, which we would be happy to facilitate for investigators 
who are interested in replicating (or expanding on) our findings. Source 
data are provided with this paper.

Code availability
MATLAB (v.2020b), Python (v.3.6), FSL (v.6.0), Advanced Normalization 
Tools (v.2.1.0), fMRIPrep (v.1.2.3), DPABI/DPARSF (v.4.3) and SPM (v.12) 
were used for the electrophysiologic and neuroimaging analyses in this 
study. The code and method21 used to analyse the evoked potentials 
are also publicly available at GitHub (http://github.com/kaijmiller/
crp_scripts). Imaris (v.8.4) was used to render histological images. 
Statistical analyses of the neuroimaging results were performed using 
Rstudio (v.1.2.5042). No new algorithms or pre-processing techniques 
were performed outside of the previously published uses of the tool-
boxes and software packages. The code used for analysing the data is 
protected under USPTO serial number: 63/170,404 and 63/220,432; 
international publication number: WO 2022/212891 A1 (international 
publication date: 6 October 2022) and can therefore be shared by the 
corresponding author only on reasonable request.
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Extended Data Fig. 1 | Relationship between the low frequency cluster power 
and trial number in the task. Trial number used as proxy measure for sweet-fat 
solution expectation. (A) Cluster power plotted as a function of trial number in 
the task (top: individual trial power, bottom: smoothed data by averaging 3 
consecutive trial values). (B) Cluster power in the first versus last 20 trials of the 

task for the neutral (top) and sweet-fat (bottom) conditions. Note that the last 
20 trials had significantly higher cluster power compared to the first 20 trials 
for the sweet-fat (p = 0.014, one-sided, unpaired permutation testing) but not 
for the taste-neutral condition (p = 0.198). NS. = non-significant, * = p < .05, error 
bars represent standard error of the mean across pooled trials.
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Extended Data Fig. 2 | 4–6 Hz power time course throughout the entirety of 
the trial. 4–6 Hz mean z-score power time traces in the dlHPC (left traces) and 
non-dlHPC (right traces) hippocampal sites, respectively. The time interval 
displayed includes the pre-cue period (−1.5 to 0 s), cue presentation (0-1 s), 

fixation cross (1–3 s), solution delivery (3–5 s), fixation cross (5-6 s), and a 
portion of the remaining duration of solution receipt/consummatory phase  
(6–7.5 s). Note increased 4–6 Hz power for sweet-fat solution is specific to the 
dorsolateral contacts during both cue presentation and solution delivery.



Extended Data Fig. 3 | dlHPC low frequency cluster power involvement in 
appetitive food processing is not observed in control brain areas.  
(A) Z-score normalized difference spectrograms between the sweet-fat minus 
the taste-neutral items in the sweet-fat incentive paradigm. Note, this is a 
repeat of Fig. 1c included here as a reference. (B, left, C) Z-score normalized 

difference spectrograms between the sweet-fat minus the taste-neutral items 
in the sweet-fat incentive paradigm in occipital (B) and middle temporal (C) 
control areas. (B, right) Spectrograms for taste-neutral (top) and sweet-fat 
(bottom) items, displayed separately for each item.
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Extended Data Fig. 4 | Non-dorsolateral hippocampal spectral content 
during food anticipation. (A) Z-score normalized difference spectrograms 
(sweet-fat – taste-neutral item) in the non-dorsolateral hippocampus (non-dlHPC) 
before (left spectrogram) and after (right spectrogram) correction for multiple 
comparisons. Colour bar indicates mean z-score power difference (using pooled 
channels as observations) between the two conditions compared to a null 
distribution. Outlined clusters (left spectrogram) reflect significant contiguous 
time-frequency voxels (p < 0.05, two-sided cluster-based permutation testing, 

1000 permutations) before correction for multiple comparisons. Thresholded 
map displays significant time-frequency cluster (~ 7–12 Hz) after correction for 
multiple comparisons using cluster size (see methods). Note the absence of a 
cluster centred in ~4–6 Hz in the thresholded map. (B) 7–12 Hz mean z-score 
power time traces in the dlHPC (left traces) and non-dlHPC (right traces) 
hippocampal sites, respectively. 0-time indicates cue presentation. Note that 
while 7–12 Hz power is recruited in both subregions, condition specificity to 
water at this frequency range is only observed in non-dlHPC.



Extended Data Fig. 5 | 7–12 Hz power time course throughout the entirety of 
the trial. 7–12 Hz mean z-score power time traces in the dlHPC (left traces) and 
non-dlHPC (right traces) hippocampal sites, respectively. The time interval 
displayed includes the pre-cue period (−1.5 to 0 s), cue presentation (0-1 s), 

fixation cross (1–3 s), solution delivery (3–5 s), fixation cross (5-6 s), and a 
portion of the remaining duration of solution receipt/consummatory phase  
(6–7.5 s). Note that increased 7–12 Hz power for water solution is specific to 
non-dorsolateral contacts during the post-cue fixation period.
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Extended Data Fig. 6 | Cluster-based permutation testing during a period of 
anticipation of reward variables from two tasks with different contrasts in 
the dlHPC. (A) z-score normalized difference spectrograms between the 
sweet-fat minus the taste-neutral items in the sweet-fat incentive paradigm. 
Note, this is a repeat of Fig. 1c included here as a reference. (B-C) z-score 
normalized difference spectrograms in the Monetary Incentive Delay task 
(MID; see Fig. S1B), which provided two different contrasts: anticipation of 

monetary loss minus anticipation of 0-loss (B) and anticipation of monetary 
gain minus anticipation of 0-gain (C). Normalization for spectral power for the 
MID task was performed as described for the sweet-fat incentive paradigm. 
Note that the low frequency power cluster is specific to the sweet-fat cue and is 
not elicited by other visual cues associated with reward anticipation in the 
non-feeding domain (loss vs. 0-loss contrast and gain vs. 0-gain contrast).



Extended Data Fig. 7 | Power of 4–6 Hz during reward anticipation and 
receipt periods in two different tasks with different contrasts in the dlHPC 
hippocampal area. (A) 4–6 Hz power time traces for sweet-fat and taste- 
neutral items in the sweet-fat incentive paradigm. Note, this is a repeat of 
Extended Data Fig. 2, left included here as a reference. (B) 4–6 Hz power time 
traces for monetary-gain and monetary-loss trials in the MID paradigm.  

(C) 4–6 Hz power time traces for the gain and loss cues contrasted with their 
corresponding 0-gain (magenta) and 0-loss cues (cyan), respectively. The time 
interval displayed for the MID task includes the pre-cue period (−1.5 to 0 s), cue 
presentation (0–2 s), fixation cross (2–4 s), button-press target (~0.350 s within 
a 4–6 s interval), and a portion of feedback delivery (6–7.5 s). Note that 
increased 4–6 Hz power is specific to the sweet-fat vs. taste-neutral contrast.
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Extended Data Fig. 8 | Cluster-based permutation testing during a period of 
anticipation of reward variables from two tasks with different contrasts in 
the non-dorsolateral hippocampal area. (A) z-score normalized difference 
spectrograms between the sweet-fat minus the taste-neutral items in the 
sweet-fat incentive paradigm. Note, this is a repeat of Extended Data Fig. 4a 
included here as a reference. (B-C) z-score normalized difference spectrograms 

in the Monetary Incentive Delay task (MID; see Fig. S1B), which provided two 
different contrasts: anticipation of monetary loss minus anticipation of 0-loss 
(B) and anticipation of monetary gain minus anticipation of 0-gain (C). Note 
that the two tasks recruit different spectral profiles in the non-dlHPC, which 
also differ from the task induced spectral profiles in the dlHPC (a double 
dissociation).



Extended Data Fig. 9 | Manual localization of the post-mortem hippocampal sample in a coronal slice of the MNI 09c brain template.
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Extended Data Fig. 10 | Connectivity of LH with control regions does not 
differ between overweight/obese and lean groups. (A) No significant 
differences in LH-non-dlHPC rsFC, LH-amygdala rsFC, LH-whole-Hippocampus 
or LH-motor cortex rsFC were found in overweight/obese compared to lean 

group (t-test, two-sided, unadjusted). (B) No significant differences in 
LH-non-dlHPC and LH-whole-Hippocampus structural CI were found in 
overweight/obese compared to lean group (t-test, two-sided, uncorrected). 
NS. = non-significant.
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